Math, asked by nrhegdehegde, 9 months ago


7. Find the 31st term of an AP whose 11th term is 38 and the 16th term is 73.

Answers

Answered by navyacp678
10

a11 = 38

a11 = 38a16 =73

a11 = 38a16 =73 a+15d=73

a11 = 38a16 =73 a+15d=73 - a+10d=38

a11 = 38a16 =73 a+15d=73 - a+10d=38 ▪️▪️▪️▪️▪️▪️▪️▪️▪️▪️▪️

a11 = 38a16 =73 a+15d=73 - a+10d=38 ▪️▪️▪️▪️▪️▪️▪️▪️▪️▪️▪️ 5d = 35

a11 = 38a16 =73 a+15d=73 - a+10d=38 ▪️▪️▪️▪️▪️▪️▪️▪️▪️▪️▪️ 5d = 35 d =7

a11 = 38a16 =73 a+15d=73 - a+10d=38 ▪️▪️▪️▪️▪️▪️▪️▪️▪️▪️▪️ 5d = 35 d =7a+10d=38

a11 = 38a16 =73 a+15d=73 - a+10d=38 ▪️▪️▪️▪️▪️▪️▪️▪️▪️▪️▪️ 5d = 35 d =7a+10d=38a+70 =38

a11 = 38a16 =73 a+15d=73 - a+10d=38 ▪️▪️▪️▪️▪️▪️▪️▪️▪️▪️▪️ 5d = 35 d =7a+10d=38a+70 =38a=38-70

a11 = 38a16 =73 a+15d=73 - a+10d=38 ▪️▪️▪️▪️▪️▪️▪️▪️▪️▪️▪️ 5d = 35 d =7a+10d=38a+70 =38a=38-70 = -32

a31=a+30d

= -32+30x7

= -32+210

=178

▪️▪️▪️▪️▪️▪️▪️▪️▪️▪️▪️▪️▪️▪️▪️▪️

▪️▪️▪️▪️▪️▪️▪️▪️▪️▪️▪️▪️▪️▪️▪️▪️

Answered by atahrv
44

Answer :

\large\star\:\:\boxed{\dag \:a_{31}=178}\:\:\star

Explanation :

\dag Given :–

  • a₁₁=38
  • a₁₆=73

\dag To Find :–

  • a₃₁ (The 31st Term of this A.P.)

\dag Formula Applied :–

  • a_n=a+[(n-1)\:\times\:d]

\dag Solution :–

We have,

=> a₁₁ =38

→ a₁₁ = a + [(11-1) × d]

→ 38 = a + 10d ----------------(1)

=> a₁₆ = 73

→ a₁₆ = a + [(16-1) × d]

→ 73 = a + 15d ----------------(2)

Subtracting Equation(2) from Equation(1) :-

⇒ 73 - (38) = a +15d - (a + 10d)

⇒ 73 - 38 = a - a + 15d - 10d

⇒ 35 = 5 × d

\implies d=\dfrac{35}{5}

\bigstar\:\:\boxed{d=7}

Now, Putting the value of d in equation(1) :-

⇒ 38 = a + (10 × 7)

⇒ 38 = a + 70

\implies a=38-70

\bigstar\:\:\boxed{a=(-32)}

So, we have now : a = (-32) , d = 7 , n = 31.

We know the formula : a_n=a+[(n-1)\:\times\:d]

Putting the above values in the Formula :-

➼ a₃₁ = (-32) + [(31-1) × (7)]

➼ a₃₁ = (-32) + [(30) × (7)]

➼ a₃₁ = 210 - 32

➼ a₃₁ = 178

__________________

Additional Information :–

A.P.(Arithmetic Progression) is a sequence of series where   after each term of the series, there is a Common Difference (d).

                                                OR

An Arithmetic Progression is a sequence in which the difference between any two consecutive terms is constant which is always denoted by d.

Sum of n terms is given by :

S_n=\frac{n}{2} [2a+(n-1)d]

                OR

S_n=\frac{n}{2} (a+l)\:\:\:\:\:\:\:\:\:[where\:l\:is\:the\:last\:term.]

Common Difference is given by :

d=a_{n+1}-a_n

Similar questions