Math, asked by armanmahi4055, 3 months ago

7.Find the angle between the vectors bar(i)+2bar(j)+3bar(k) and 3bar(i)-bar(j)+2bar(k)

Answers

Answered by pulakmath007
2

SOLUTION

TO DETERMINE

The angle between the vectors

 \hat{ \imath} + 2 \hat{ \jmath} + 3 \hat{k} \:  \: and \:  \:  \:  3\hat{ \imath}  -  \hat{ \jmath} + 2 \hat{k}

EVALUATION

Here the given two vectors are

 \hat{ \imath} + 2 \hat{ \jmath} + 3 \hat{k} \:  \: and \:  \:  \:  3\hat{ \imath}  -  \hat{ \jmath} + 2 \hat{k}

Let θ be the required angle

 \displaystyle \sf{  \cos \theta =  \frac{( \hat{ \imath} + 2 \hat{ \jmath} + 3 \hat{k}).(  3\hat{ \imath}  -  \hat{ \jmath} + 2 \hat{k})}{ |( \hat{ \imath} + 2 \hat{ \jmath} + 3 \hat{k})  || (  3\hat{ \imath}  -  \hat{ \jmath} + 2 \hat{k})| } }

 \displaystyle \sf{ \implies  \cos \theta =  \frac{3 - 2 + 6}{  \sqrt{14} \times  \sqrt{14}   } }

 \displaystyle \sf{ \implies  \cos \theta =  \frac{7}{  14} }

 \displaystyle \sf{ \implies  \cos \theta =  \frac{1}{ 2} }

 \displaystyle \sf{ \implies   \theta =  \frac{\pi}{ 3} }

So the required angle

 \displaystyle \sf{ =  \frac{\pi}{ 3} }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If the magnitude of sum of two non zero vectors is equal to the magnitude of their difference then which of the following

https://brainly.in/question/29779844

2. If c is perpendicular to both a and b, then prove that it is also perpendicular to both a+b and a-b

https://brainly.in/question/22657880

Similar questions