Math, asked by msf75, 6 months ago

7. Find the area of a sector of a circle with radius 6 cm if angle of the sector is 60°
2 morks each​

Answers

Answered by ItzFranklinRahul
1

Given that:

Radius of the circle(r) = 6 cm

Angle of the sector (θ) = 60°

area \: of \: the \: sector \:  =  \frac{θ}{360} \pi {r}^{2}  \\  =  \frac{60°}{360°}  \times  \frac{22}{7}  \ \times  {6}^{2}  \\ \\   =  \frac{1}{6}  \times  \frac{22}{7}  \times 36 \\  \\  =  \frac{22 \times 6}{7}  \\  \\  = \frac{132}{7}  \\  \\ =  18.714 {cm}^{2}

──────✧❁✧───────

Answered by nakrasameer18
0

Step-by-step explanation:

 \mathfrak{ \huge{ \green{ \underline{given}}}} \\  \mathfrak{ \large{ \red{radius \:  =  \: 6 \: cm}}} \\  \mathfrak{ \large{ \red{angle \: of \: sector \: (θ) = {60}^{o}}}} \\  \mathfrak{ \huge{ \green{ \underline{to \: find}}}} \\  \mathfrak{ \large{ \red{area \: of \: sector \:  =  \: ?}}} \\ \mathfrak{ \huge{ \green{ \underline{formula \: to \: be \: used}}}} \\  \mathfrak{ \large{ \red{area \: of \: sector \:  =  \:  \frac{θ}{360}  \:  \times  \: \pi {r}^{2} }}} \\  \mathfrak{ \huge{ \green{ \underline{solution}}}} \\  \mathfrak{ \large{ \blue{area \: of \: sector \: = \frac{θ}{360} \times \pi {r}^{2}}}} \\  \mathfrak{ \large{ \blue{area \: of \: sector \:  =  \:  \frac{60}{360} \times  \frac{22}{7} \times 6 \times 6  }}} \\  \mathfrak{ \large{ \blue{area \: of \: sector \:  =  \: \frac{1}{6} \times  \frac{22}{7} \times 6 \times 6  }}} \\  \mathfrak{ \large{ \blue{area \: of \: sector \:  =  \:  \frac{22}{7}  \times 6}}} \\  \mathfrak{ \large{ \orange{ \underline{area \: of \: sector \:  =  \:  \frac{132}{7}  {cm}^{2} }}}}

Similar questions