7
Find the eqution of the Straight line passing
through (-3, 10) and sum of their
Intercept
is 8.
Answers
EXPLANATION.
Equation of straight lines passing through points = (-3,10).
Sum of the intercept = 8.
As we know that,
Intercept form = x/a + y/b = 1.
Let we assume that,
Sum of the intercept = a + b = 8.
⇒ b = 8 - a.
Put the value of b = 8 - a in equation, we get.
⇒ -3/a + 10/8 - a = 1.
⇒ -3(8 - a) + 10a/(a)(8 - a) = 1.
⇒ -24 + 3a + 10a = a(8 - a).
⇒ -24 + 13a = 8a - a².
⇒ -24 + 13a - 8a + a² = 0.
⇒ a² + 5a - 24 = 0.
Factorizes the equation into middle term splits, we get.
⇒ a² + 8a - 3a - 24 = 0.
⇒ a(a + 8) - 3(a + 8) = 0.
⇒ (a - 3)(a + 8) = 0.
⇒ a = 3 and a = -8.
Put the value in equation, we get.
⇒ b = 8 - a.
⇒ b = 8 - 3.
⇒ b = 5.
⇒ b = 8 - a.
⇒ b = 8 - (-8).
⇒ b = 16.
Equation of straight lines,
⇒ a = 3 and b = 5.
⇒ x/3 + y/5 = 1.
⇒ 5x + 3y = 15.
Equation of straight lines,
⇒ a = -8 and b = 16.
⇒ x/-8 + y/16 = 1.
⇒ -2x + y = 16.
MORE INFORMATION.
Equation of straight lines parallel to the axes.
(1) = Equation of x-axes ⇒ y = 0.
(2) = Equation of a line parallel to x-axes at a distance of b ⇒ y = b.
(3) = Equation of y-axes ⇒ x = 0.
(40 = Equation of a line parallel to y-axes and at a distance of a ⇒ x = a.
Answer:
AnswEr :
Let the Intercept be 'a' and 'b'.
- Points = ( x,y ) = ( -3,10 )
- Sum of Intercept = (a + b) = 8
» a + b = 8
» b = 8 - a
• Now A.T.Q. Point Intercept Form
- By Cross Multiplication
⇒ - 24 + 3a + 10a = 8a - a²
⇒ 13a - 24 = 8a - a²
⇒ a² + 13a - 8a - 24 = 0
⇒ a² + 5a - 24 = 0
- Splitting Middle Term
⇒ a² + 8a - 3a - 24 = 0
⇒ a(a + 8) - 3(a + 8) = 0
⇒ (a - 3)(a + 8) = 0
⇒ a = 3 ⠀or, ⠀a = - 8
⇒ b = (8 - 3) = 5 ⠀or, ⠀b = {8 + (- 8)} = 16
- Equation Can Be :
⋆
⋆