Math, asked by lopamudrapradhan4321, 5 months ago


7. Find the maximum value of the following.
(1) 5 sin x + 12 cos x
(ü) 24 sin x - 7 cos x
(ii) 2 + 3 sin x + 4 cos x
(iv) 8 cos x - 15 sin x - 2.

Answers

Answered by PharohX
3

Answer:

For this type of problem Always make a diagram of right triangle

After that..

Form the above solution

13( \frac{5}{13}  \sin(x)  +  \frac{12}{13}  \cos(x) )  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ \\ =   13( \sin(A)  \sin(x)  +  \cos(A) \cos(x)  ) \\  \\ =  13( \cos(A</strong><strong> </strong><strong>-</strong><strong> </strong><strong>x)) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Now we know the maximum value of cos(x) is 1

maximum  \: \: valu e \:  \: of \:  \\  \cos(A </strong><strong>-</strong><strong> x) = 1 \\  \\ 13cos(A </strong><strong>-</strong><strong> x)  = 13 \times 1 \\  \\ 13cos(A </strong><strong>-</strong><strong> x)  = 13

Try to solve other as same.

Attachments:
Similar questions