Math, asked by baljitbuttar000, 8 months ago

7. Find the slop of the tangent to the curve.
y = x2-3x+2 at the point whose x-coordinate is 3.​

Answers

Answered by amansharma264
5

EXPLANATION.

 \sf  : \implies \: slope \: of \: the \: tangent \: to \: the \: curve = y =  {x}^{2}  - 3x + 2 \\  \\  \sf  : \implies \: at \: the \: point \: whose \: x - coordinate \:   = 3

\sf  : \implies \: as \: we \: know \: that \:  \\  \\  \sf  : \implies \: slope \:  \: of \: tangent \:  =  \frac{dy}{dx} \\  \\  \sf  : \implies \:  \frac{dy}{dx}  = 2x - 3 \\  \\  \sf  : \implies \frac{dy}{dx}   = 2(3) - 3 \\  \\  \sf  : \implies \:  \frac{dy}{dx} = 3 \\  \\ \sf  : \implies \: slope \: of \: tangent = 3

Also we can calculate the equation

of tangent.

 \sf  : \implies \:  \dfrac{dy}{dx}  = 2x - 3 = 3 \\  \\  \sf  : \implies \: 2x = 6 \\  \\  \sf  : \implies \: x \:  = 3 \:  \\  \\  \sf  : \implies \: put \: the \: value \: of \: x = 3 \: in \: equation \:  \\  \\ \sf  : \implies \: y = (3) {}^{2} - 3(3)  + 2 \\  \\  \sf  : \implies \: y = 2

\sf  : \implies \: \: its \: coordinate \:  = (3,2) \\  \\ \sf  : \implies  \: equation \: of \: tangent \\  \\ \sf  : \implies  \: (y -  y_{1}) =  \frac{dy}{dx}(x -  x_{1}) \\  \\ \sf  : \implies  \: (y - 2) = 3(x - 3) \\  \\ \sf  : \implies  \: y - 2 = 3x - 9 \\  \\ \sf  : \implies  \: 3x - y = 7 = equation \: of \: tangent

Similar questions