Math, asked by shca04, 7 months ago

7) Find the value of x so that (2^-1 + 4^-1 + 6^-1 + 8^-1)^x = 1​

Answers

Answered by vinayjayan
0

Answer:

the value of x=0

Step-by-step explanation:

Answered by mathdude500
2

Question

\bf \:Find  \: the \:  value  \: of  \: x \:  so \:  that \:

\bf \:{( {2 }^{ - 1}  +  {4}^{ - 1}  +  {6}^{ - 1}  +  {8 }^{ - 1} )}^{x}  = 1

Answer

Identity used :-

\bf \: {x}^{ - 1}  = \dfrac{1}{x}

\bf \: {x}^{0}  = 1

Solution:-

\bf \:{( {2 }^{ - 1}  +  {4}^{ - 1}  +  {6}^{ - 1}  +  {8 }^{ - 1} )}^{x}  = 1

\bf\implies \:  {(\dfrac{1}{2}  + \dfrac{1}{4} +  \dfrac{1}{6}  + \dfrac{1}{8}) }^{x}  = 1

\bf\implies \: {(\dfrac{12 + 6 + 4 + 3}{24}) }^{x}  = 1

\bf\implies \: {(\dfrac{25}{24} )}^{x}  = 1

\bf\implies \: {(\dfrac{25}{24}) }^{x}  =  {(\dfrac{25}{24})}^{0}

\bf\implies \:x = 0

____________________________________________

Additional Information

Properties of exponents:-

 \bf \:{x}^{m}  \times  {x}^{n}  =  {x}^{m + n}

\bf \: {x}^{m}   \div   {x}^{n}  =  {x}^{m - n}

\bf \: {x}^{ - m}  = \dfrac{1}{ {x}^{m} }

\bf \: {x}^{m}  \times  {y}^{m}  =  {(xy)}^{m}

\bf \: {x}^{0}  = 1

\bf \: {x}^{m}  =  {x}^{n} ⇛ \: m = n

Similar questions