7. If a + B = 3, a3+b3= 7, then a and B are the roots of
(A) 3x2 + 9x + 7 = 0 (B) 9x2 – 27x + 20 = 0 (C) 2x2 - 6x + 15 = 0 (D) None of these
Answers
Answer:
Step-by-step explanation:
Given that,
and
On substituting the value of a + B = 3, we get
Now, quadratic equation having a and B as roots is given by
On substituting the values, we get
Additional Information :-
Nature of roots:
Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.
If Discriminant, D > 0, then roots of the equation are real and unequal.
If Discriminant, D = 0, then roots of the equation are real and equal.
If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.
Where,
Discriminant, D = b² - 4ac
EXPLANATION.
⇒ a + b = 3. - - - - - (1).
⇒ a³ + b³ = 7. - - - - - (2).
As we know that,
Formula of :
⇒ (x³ + y³) = (x + y)(x² - xy + y²).
⇒ (x² + y²) = (x + y)² - 2xy.
Using this formula in this question, we get.
⇒ (a³ + b³) = (a + b)(a² - ab + b²).
⇒ (a³ + b³) = (a + b)[(a + b)² - 2ab - ab].
⇒ (a³ + b³) = (a + b)[(a + b)² - 3ab].
Put the values in the equation, we get.
⇒ (7) = (3)[(3)² - 3ab].
⇒ 7 = 3(9 - 3ab).
⇒ 7 = 27 - 9ab.
⇒ 7 - 27 = - 9ab.
⇒ - 20 = - 9ab.
⇒ 20 = 9ab.
⇒ ab = 20/9.
Formula of quadratic polynomial.
⇒ x² - (a + b)x + ab.
Put the values in the formula, we get.
⇒ x² - (3)x + (20/9) = 0.
⇒ 9x² - 27x + 20 = 0.
∴ The roots of equation are : 9x² - 27x + 20 = 0.
Option [B] is correct answer.