Math, asked by chayanika49, 1 year ago

7. If a + B = 3, a3+b3= 7, then a and B are the roots of
(A) 3x2 + 9x + 7 = 0 (B) 9x2 – 27x + 20 = 0 (C) 2x2 - 6x + 15 = 0 (D) None of these


chayanika49: it's a cube nd b cube

Answers

Answered by mathdude500
3

Answer:

\boxed{\sf \: (B) \:  \:   {9x}^{2}  - 27x + 20  = 0  \: }\\  \\

Step-by-step explanation:

Given that,

\sf \: a + B = 3 \\  \\

and

\sf \:  {a}^{3}  +  {B}^{3}  = 7 \\  \\

\sf \:  {(a + B)}^{3} - 3aB(a + B)  = 7 \\  \\

On substituting the value of a + B = 3, we get

\sf \:  {(3)}^{3} - 3aB(3)  = 7 \\  \\

\sf \: 27 -  9aB  = 7 \\  \\

\sf \: -  9aB  = 7  - 27\\  \\

\sf \: -  9aB  =  - 20\\  \\

\implies\sf \: aB = \dfrac{20}{9} \\  \\

Now, quadratic equation having a and B as roots is given by

\sf \:  {x}^{2} - (a + B)x + aB = 0 \\  \\

On substituting the values, we get

\sf \:  {x}^{2} - (3)x +  \dfrac{20}{9}  = 0 \\  \\

\sf \:  \dfrac{ {9x}^{2}  - 27x + 20}{9}  = 0 \\  \\

\implies\sf \:  {9x}^{2}  - 27x + 20  = 0 \\  \\

\rule{190pt}{2pt}

Additional Information :-

Nature of roots:

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Answered by amansharma264
3

EXPLANATION.

⇒ a + b = 3. - - - - - (1).

⇒ a³ + b³ = 7. - - - - - (2).

As we know that,

Formula of :

⇒ (x³ + y³) = (x + y)(x² - xy + y²).

⇒ (x² + y²) = (x + y)² - 2xy.

Using this formula in this question, we get.

⇒ (a³ + b³) = (a + b)(a² - ab + b²).

⇒ (a³ + b³) = (a + b)[(a + b)² - 2ab - ab].

⇒ (a³ + b³) = (a + b)[(a + b)² - 3ab].

Put the values in the equation, we get.

⇒ (7) = (3)[(3)² - 3ab].

⇒ 7 = 3(9 - 3ab).

⇒ 7 = 27 - 9ab.

⇒ 7 - 27 = - 9ab.

⇒ - 20 = - 9ab.

⇒ 20 = 9ab.

⇒ ab = 20/9.

Formula of quadratic polynomial.

⇒ x² - (a + b)x + ab.

Put the values in the formula, we get.

⇒ x² - (3)x + (20/9) = 0.

⇒ 9x² - 27x + 20 = 0.

∴ The roots of equation are : 9x² - 27x + 20 = 0.

Option [B] is correct answer.

Similar questions