Math, asked by yuvrajsingh11464, 7 months ago


7. If cot 0=7/8
- evaluate : (i)
(1 + sin 0) (1 - sin o)
(1 + cos 0) (1 - cos )
(ii) cot? 0​

Answers

Answered by nilu7245
0

Answer:

cotθ = 49/64

To find (i):

\Longrightarrow \sf \dfrac{(1+sin\theta)(1-sin\theta)}{(1+cos\theta)(1-cos\theta)}⟹

(1+cosθ)(1−cosθ)

(1+sinθ)(1−sinθ)

⇒ Using (a - b)(a + b) = a² - b² we get,

\Longrightarrow \sf \dfrac{1^2-sin^2\theta}{1^2-cos^2\theta}⟹

1

2

−cos

2

θ

1

2

−sin

2

θ

⇒ Using 1 - sin²θ = cos²θ and 1 - cos²θ = sin²θ we get,

\Longrightarrow \sf \dfrac{cos^2\theta}{sin^2\theta}⟹

sin

2

θ

cos

2

θ

⇒ Using cos²θ/sin²θ = cot²θ we get,

\Longrightarrow \sf cot^2\theta⟹cot

2

θ

⇒ Using cotθ = 7/8 we get,

\Longrightarrow \sf (\dfrac{7}{8})^2⟹(

8

7

)

2

\Longrightarrow \sf \dfrac{49}{64}⟹

64

49

Therefore,

\Longrightarrow \sf \dfrac{(1+sin\theta)(1-sin\theta)}{(1+cos\theta)(1-cos\theta)} = \dfrac{49}{64}⟹

(1+cosθ)(1−cosθ)

(1+sinθ)(1−sinθ)

=

64

49

_____________________

To find (ii): cot²θ

\Longrightarrow \sf (\dfrac{7}{8})^2⟹(

8

7

)

2

\Longrightarrow \sf \dfrac{49}{64}⟹

64

49

Answered by ms8120584
5

hope this will be yours answer up to where I have understand

Attachments:
Similar questions