Math, asked by DisxoRahul, 4 months ago

7. If sec 0 - tan 0 / sec 0 + tan 0 = 1/4, find sin 0​

Answers

Answered by Anonymous
25

\underline{\underline{\sf SOLUTION :}} \\

\dashrightarrow\:\:\sf \dfrac{\sec( \theta) -  \tan( \theta)}{\sec( \theta)  +  \tan( \theta)} =  \dfrac{1}{4}  \\  \\

\tiny\dag \: \underline{\frak{Cross \:  multiplying  \: both  \: the \:  sides  \: we  \: get :}} \\  \\

\dashrightarrow\:\:\sf 4 \bigg(\sec( \theta) -  \tan( \theta) \bigg) = 1 \bigg(\sec( \theta)  +  \tan( \theta) \bigg) \\  \\

\dashrightarrow\:\:\sf 4 \sec( \theta) - 4 \tan( \theta)  = \sec( \theta)  +  \tan( \theta) \\  \\

\tiny\dag \: \underline{\frak{Now \:  Combine\: the \:  like  \:terms\:we \: get :}} \\  \\

\dashrightarrow\:\:\sf 4 \sec( \theta) -\sec( \theta)  = \tan( \theta) +  4 \tan( \theta)\\  \\

\dashrightarrow\:\:\sf 3 \sec( \theta)  = 5 \tan( \theta)\\  \\

\dashrightarrow\:\:\sf 3 \sec( \theta) = 5 \times  \dfrac{ \sec( \theta)}{ \csc(\theta) }\qquad \Bigg\lgroup\bf{\because \tan(\theta) = \dfrac{\sec( \theta)}{\csc(\theta)} }\Bigg\rgroup \\   \\

\dashrightarrow\:\:\sf \dfrac{ 3 \sec( \theta)}{5\sec( \theta)} =  \dfrac{1}{ \csc(\theta) } \\   \\

\dashrightarrow\:\:\sf \dfrac{ 3 }{5} =  \dfrac{1}{ \csc(\theta) } \\   \\

\tiny\dag \: \underline{\frak{Replacing \dfrac{1}{\csc (\theta)} by \sin(\theta):}} \\  \\

\dashrightarrow\:\:  \dag \: \underline{ \boxed{\sf  \sin( \theta)  = \dfrac{ 3 }{5} }}  \:  \dag\\   \\

Answered by Ankita0406
2

Step-by-step explanation:

Your answers are attached above.

Please mark it as the brainliest and like my answers.

Don't worry the answers are 1000000000000000000% correct

Hope it helps :)

Attachments:
Similar questions