7.If tan A and tanB are the roots of the quadraticequation, 3x^2-10x-25=0, then the value of3 sin^2 (A+B)-10 sin(A+B).COS(A+B)-25 cos^2(A+B)is :(JEE MAIN (Online) - 2018](A) 10 (B) -10 (C) 25 (0) --25
Answers
Solution :
The given equation is
3x² - 10x - 25 = 0
or, 3x² - 15x + 5x - 25 = 0
or, 3x (x - 5) + 5 (x - 5) = 0
or, (x - 5) (3x + 5) = 0
Either x - 5 = 0 or, 3x + 5 = 0
i.e., x = 5, - 5/3
Let us consider:
tanA = 5 and tanB = - 5/3 [ ATQ ]
Now, tan(A + B)
= (tanA + tanB)/(1 - tanA tanB)
= {5 + (- 5/3)}/{1 - 5 (- 5/3)}
= (5 - 5/3)/(1 + 25/3)
= (15 - 5)/(3 + 25)
= 10/28
= 5/14
Thus, hypotenuse = √(5² + 14²) = √221
Then, sin(A + B) = 5/√221
and cos(A + B) = 14/√221
Now, 3 sin²(A + B) - 10 sin(A + B) cos(A + B) - 25 cos²(A + B)
= 3 (5/√221)² - 10 (5/√221) (14/√221) - 25 (14/√221)²
= 3 (25/221) - 10 (70/221) - 25 (196/221)
= 75/221 - 700/221 - 4900/221
= - 5525/221
= - 25
Therefore, option (D) is correct.
Answer:
c gaii ok hi TV9 ya so it so if so is still my 5s