7 If tan A = n tan B and sin A = m sin B, prove that cos^2 A =
m² - 1/n^2 - 1
Answers
Answered by
0
Step-by-step explanation:
We have to find cos
2
A in terms of m and n. This means that angle B is to be eliminated from the given relations.
Now,
tanA=n tanB ⇒ tanB=
n
1
tanA ⇒ cotB=
tanA
n
and
sinA=msinB ⇒ sinB =
m
1
sinA ⇒ cosecB =
sinA
m
Substituting the values of cotB and cosecB in cosec
2
B−cot
2
B=1, we get,
⇒
sin
2
A
m
2
−
tan
2
A
n
2
=1
⇒
sin
2
A
m
2
−
sin
2
A
n
2
cos
2
A
=1
⇒
sin
2
A
m
2
−n
2
cos
2
A
=1
⇒m
2
−n
2
cos
2
A=sin
2
A
⇒m
2
−n
2
cos
2
A=1−cos
2
A
⇒m
2
−1=n
2
cos
2
A−cos
2
A
⇒m
2
−1=(n
2
−1)cos
2
A
⇒
n
2
−1
m
2
−1
=cos
2
A
make me brain list and follow me
Similar questions
India Languages,
2 months ago
Social Sciences,
2 months ago
Math,
2 months ago
Hindi,
5 months ago
English,
5 months ago
English,
11 months ago