Math, asked by MasterM, 5 months ago

7 If tan A = n tan B and sin A = m sin B, prove that cos^2 A =
m² - 1/n^2 - 1​

Answers

Answered by anujgodwe956
0

Step-by-step explanation:

We have to find cos

2

A in terms of m and n. This means that angle B is to be eliminated from the given relations.

Now,

tanA=n tanB ⇒ tanB=

n

1

tanA ⇒ cotB=

tanA

n

and

sinA=msinB ⇒ sinB =

m

1

sinA ⇒ cosecB =

sinA

m

Substituting the values of cotB and cosecB in cosec

2

B−cot

2

B=1, we get,

sin

2

A

m

2

tan

2

A

n

2

=1

sin

2

A

m

2

sin

2

A

n

2

cos

2

A

=1

sin

2

A

m

2

−n

2

cos

2

A

=1

⇒m

2

−n

2

cos

2

A=sin

2

A

⇒m

2

−n

2

cos

2

A=1−cos

2

A

⇒m

2

−1=n

2

cos

2

A−cos

2

A

⇒m

2

−1=(n

2

−1)cos

2

A

n

2

−1

m

2

−1

=cos

2

A

make me brain list and follow me

Similar questions