Math, asked by Sushilking, 2 months ago


7. If tan A+
tan A
Solution:
1
2 then show that tan’ A+
= 2
.
tan? A​

Attachments:

Answers

Answered by Anonymous
189

Given :

\\

  • \sf tan \: A +  \dfrac{1}{tan \: A}  = 2

\\

To prove :

\\

  • \sf tan^2A +  \dfrac{1}{tan^2A}  = 2

\\

Proof :

\\

 \implies \sf tan \: A +  \dfrac{1}{tan \: A}  = 2

\\\\

  • Squaring both sides

\\\\

\implies \sf   \left(tan \: A +  \dfrac{1}{tan \: A} \right)^2= (2)^2

\\\\

  • Apply identity
  • (a + b)² = a² + b² + 2ab

\\\\

  \implies \sf (tan \: A)^2 +  \left( \dfrac{1}{tan \: A}  \right)^2 + 2 \times tan \: A  \times  \dfrac{1}{ tan \: A}= 4

\\\\

 \implies \sf tan^2A +  \dfrac{1}{tan^2A} + 2 \times \cancel{ tan \: A }\:  \times  \dfrac{1}{ \cancel{ tan \: A}}  = 4

\\\\

 \implies \sf tan^2A +  \dfrac{1}{tan^2A} + 2  = 4

\\\\

 \implies \sf tan^2A +  \dfrac{1}{tan^2A}  = 4 - 2

\\\\

\implies \sf tan^2A +  \dfrac{1}{tan^2A}  = 2

\\\\

  • \sf tan^2A +  \dfrac{1}{tan^2A}  = 2 ---PROVED

amitkumar44481: Perfect :-)
Answered by SavageBlast
240

\huge{\underline{\green{Given:-}}}

  • tan\:A+\dfrac{1}{tan\:A}=2

\huge{\underline{\green{To\:Show:-}}}

  • tan^2\:A+\dfrac{1}{tan^2\:A}=2

\huge{\underline{\green{Identity\:Used:-}}}

  • (a + b)² = a² + b² + 2ab

\huge{\underline{\green{Solution:-}}}

\implies\:tan\:A+\dfrac{1}{tan\:A}=2

Squaring both sides,

\implies\:(tan\:A+\dfrac{1}{tan\:A})^2=2^2

\implies\sf\:tan^2\:A+\dfrac{1}{tan^2\:A}+2×tan\:A×\dfrac{1}{tan\:A}=4

\implies\:tan^2\:A+\dfrac{1}{tan^2\:A}+2=4

\implies\:tan^2\:A+\dfrac{1}{tan^2\:A}=4-2

{\boxed{\implies\:tan^2\:A+\dfrac{1}{tan^2\:A}=2}}

Hence Proved.

━━━━━━━━━━━━━━━━━━━━━━━━━

More Identities:-

  • (a - b)² = a² + b² - 2ab

  • a² - b² = (a + b)(a - b)

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions