Math, asked by jeetmaharaj, 9 months ago

7. If
 \alpha and \beta
are the zeros of the quadratic polynomial f(x) = x²– px + q then find the value of
(i)
 { \alpha }^{2}  +  { \beta }^{2}

(ii)
 \binom{1}{ \alpha }   +   \binom{1}{ \beta }

Answers

Answered by VishnuPriya2801
42

Answer:-

Given Polynomial: x² - px + q

Let, a = 1 ; b = - p and c = q.

We know that,

Sum of the zeroes = - b/a

 \sf \implies \:  \alpha  +  \beta  =  \frac{ - ( - p)}{1}  \\  \\  \implies \sf   \large{\alpha  +  \beta  = p \:  \:  -  \:  \: equation \:  -  \: (1)}

And,

Product of the zeroes = c/a

  \sf \:\implies \large{ \alpha  \beta  =  \frac{q}{1} \:  \:  -  \:  \: equation \:  -  \: (2)}

We have to find:

 \sf 1) \: \large{\alpha ^ 2 + \beta ^ 2}

We know that,

(a + b)² = a² + b² + 2ab

→ a² + b² = (a + b)² - 2ab

Hence,

 \sf \implies \alpha^2 + \beta^2 = {(\alpha + \beta)}^{2} - 2\alpha \beta

Putting the values from equation (1) & (2) we get,

 \sf \implies \alpha ^ 2 + \beta^2 = {(p)}^{2} - 2(q) \\ \\ \sf \implies \large\red{{\alpha^2 + \beta^2 ={ p}^{2 }- 2q}}

 \sf 2) \: \large{\frac{1}{\alpha} + \frac{1}{\beta}}

Taking LCM we get,

 \sf \implies \frac{\beta + \alpha}{\alpha\beta}

Putting the values we get,

 \sf \implies \large\red{ { \frac{p}{q} }}

Answered by rocky200216
52

\large\mathcal{\underbrace{\red{SOLUTION:-}}}

GIVEN :-

  • \rm{\red{\alpha}\:and\:\red{\beta}} are the zero of the quadratic polynomial f(x) .

  • where, f(x) = x² - px + q .

CONCEPT :-

✍️ If, two zeros of a quadratic polynomial are given, then

\checkmark\:\rm{\boxed{Sum\:of\:the\:zeros\:=\:\dfrac{-(coefficient\:of\:x)}{coefficient\:of\:x^2}\:}}

\checkmark\:\rm{\boxed{Product\:of\:zeros\:=\:\dfrac{constant\:term}{coefficient\:of\:x^2}\:}}

CALCULATION :-

✴️ Here,

  • coefficient of ‘x²’ = 1

  • coefficient of ‘x’ = -p

  • constant term = q

\longrightarrow\:\rm{\boxed{\alpha\:+\:\beta\:=\:\dfrac{-(-\:p)}{1}\:=\:p\:}}

\longrightarrow\:\rm{\boxed{\alpha\:\beta\:=\:\dfrac{q}{1}\:=\:q\:}}

[1] \rm{{(\alpha\:+\:\beta)}^2\:=\:{\alpha}^2\:+\:{\beta}^2\:+\:2\:\alpha\:\beta\:}

\rm{\implies\:{\alpha}^2\:+\:{\beta}^2\:=\:(\alpha\:+\:\beta)^2\:-\:2\:\alpha\:\beta\:}

\rm{\implies\:{\alpha}^2\:+\:{\beta}^2\:=\:(p)^2\:-\:2\times{q}\:}

\bigstar\:\rm{\purple{\boxed{\implies\:{\alpha}^2\:+\:{\beta}^2\:=\:p^2\:-\:2q\:}}}

[2] \rm{\dfrac{1}{\alpha}\:+\:\dfrac{1}{\beta}\:}

\rm{\implies\:\dfrac{\beta\:+\:\alpha}{\alpha\:\beta}\:}

\rm{\implies\:\dfrac{p}{q}\:}

\bigstar\:\rm{\blue{\boxed{\dfrac{1}{\alpha}\:+\:\dfrac{1}{\beta}\:=\:\dfrac{p}{q}\:}}}

Similar questions