Physics, asked by dolly9563, 6 months ago

7. If the forces shown in figure are in equilibrium find F1
and Fr
AF.
50N
30
37°
25N
53
25N
45°
F
40N
2012N
8. Find the tensions in the three strings. One string is horizontal, one
the other is inclined at 60° with the horizontal.
120
20 cm​

Answers

Answered by anubhabkumar2020
0

Answer:

Answer:

Answer:

Answer: L=2m,

Answer: L=2m,d=3mm,A=

Answer: L=2m,d=3mm,A= 4

Answer: L=2m,d=3mm,A= 49π

Answer: L=2m,d=3mm,A= 49π

Answer: L=2m,d=3mm,A= 49π ×10

Answer: L=2m,d=3mm,A= 49π ×10 −6

Answer: L=2m,d=3mm,A= 49π ×10 −6 m

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL=

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 4

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10 11

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10 11

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10 11 30×2

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10 11 30×2

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10 11 30×2 =8.48×10

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10 11 30×2 =8.48×10 −5

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10 11 30×2 =8.48×10 −5 m=0.085mm

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10 11 30×2 =8.48×10 −5 m=0.085mm

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10 11 30×2 =8.48×10 −5 m=0.085mm .

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10 11 30×2 =8.48×10 −5 m=0.085mm .

Answer: L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π ×10 −6 ×10 11 30×2 =8.48×10 −5 m=0.085mm .

Similar questions