7. If the sizes of the interior angles of a pentagon
are 2x°, 3.x°, 4x°, 5.rº and 6.xº, find the largest interior
angle of the pentagon.
Answers
Answer:
here his your answer
Step-by-step explanation:
please mark me branlist
Required Answer :
Largest interior angle of the pentagon = 162°
Given :
We are given the measures of the interior angles of a pentagon :-
- First angle = 2x°
- Second angle = 3x°
- Third angle = 4x°
- Fourth angle = 5x°
- Fifth angle = 6x°
To find :
- The largest interior angle of the pentagon
Solution :
Using formula,
- Sum of interior angles of a polygon = (2n - 4) × 90°
where,
- n denotes the number of sides of the polygon
Pentagon has 5 sides, 5 angles.
Therefore, (n) = 5
Substituting the given values :-
⇒ 2x° + 3x° + 4x° + 5x° + 6x° = (2(5) - 4) × 90°
⇒ 20x° = (2(5) - 4) × 90°
⇒ 20x° = (10 - 4) × 90°
⇒ 20x° = 6 × 90°
⇒ 20x° = 540°
⇒ x° = 540°/20
⇒ x° = 54°/2
⇒ x° = 27°
Substituting the value of 'x' in the interior angles of the pentagon :-
⇒ First angle = 2x°
⇒ First angle = 2(27°)
⇒ First angle = 54°
⇒ Second angle = 3x°
⇒ Second angle = 3(27°)
⇒ Second angle = 81°
⇒ Third angle = 4x°
⇒ Third angle = 4(27°)
⇒ Third angle = 108°
⇒ Fourth angle = 5x°
⇒ Fourth angle = 5(27°)
⇒ Fourth angle = 135°
⇒ Fifth angle = 6x°
⇒ Fifth angle = 6(27°)
⇒ Fifth angle = 162°
Therefore, the fifth angle of the pentagon with the measure 162° is the largest interior angle of the pentagon.