7. If x + y = 7 and x - y = 3, evaluate
(a) xy. (b) x^2 + y^2
Answers
Answered by
45
Given :-
- x + y = 7
- x - y = 3
To find :-
- xy and x² + y²
Solution :-
Given two equations From these equations Lets find values of x, y
x + y = 7
x - y = 3
Adding two equations
x + y + x - y = 7 + 3
x + x + y - y = 10
2x = 10
x =10/2
x =5
Substitute value of x in any equation
x + y = 7
5 + y = 7
y = 7 - 5
y = 2
So, the values of x, y are 5,2
Now finding xy, x² + y²
xy = 5(2)
xy = 10
x² + y² = (5)² + (2)²
x² + y² = 25 + 4
x² + y² = 29
So, xy = 10 & x² + y² = 29
_____________________
Know more some algebraic identities:-
(a+ b)² = a² + b² + 2ab
( a - b )² = a² + b² - 2ab
( a + b )² + ( a - b)² = 2a² + 2b²
( a + b )² - ( a - b)² = 4ab
( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca
a² + b² = ( a + b)² - 2ab
(a + b )³ = a³ + b³ + 3ab ( a + b)
( a - b)³ = a³ - b³ - 3ab ( a - b)
If a + b + c = 0 then a³ + b³ + c³ = 3abc
Answered by
226
Let's do it,
⟼ x + y = 7 ....(i)
⟼ x - y = 3 ....(ii)
⟼ x + y = 7 ....(i)
we have got the values of x and y,
Therefore,
● xy = 10
● x² + y² = 29
━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Similar questions