7. In the adjoining figure, the diagonals AC and BD of parallelogram
ABCD intersect at O. If angle OBC = 36°, angle ODC = 28° and angle AOD = 64°;
find the measure of (i) angle OAD (ii) angle OCD.
Attachments:
Answers
Answered by
104
Answer:
¡SIDES OF A PARALLELOGRAM ARE PARALLEl
OA=OD(DIAGONAL OF A PARALLELOGRAM BISECT EACH OTHER)
THUS
ANGLE OAD=ODA (ANGLES OPP. TO EQUAL SIDES )
so angle OAD + angle DOA+ ANGLE ODA =180
angle 2OAD+ 64°=180°
2OAD=180-64
2OAD=116
OAD,=116/2
OAD =58°
¡¡ OC=OD ( DIAGONAL OF A PARALLELOGRAM BISECT EACH OTHER)
THUS
ANGLE ODC=ANGLE OCD=28°(ANGLES OPP. TO EQUAL SIDES)
PLEASE MARK BRAINLIEST
Similar questions