Math, asked by shah7719, 8 months ago

7. In triangle ABC, B = 90° and BM is an altitude. If
BM = √30 and CM = 3, find AC.​

Answers

Answered by hanshu1234
0

Step-by-step explanation:

Midpoint of hypotenuse of right - angle triangle is also 

the circumference  

Also the angle subscribed by triangle in 

a semicircle is right -angle 

∴ In this circle, 

AM=MC=MB= radius ...(1) 

Given, BM=177cmAB+BC=30cm

BY Pythagoras theorem, In ΔABC

AC2=AB2+BC2

(AM+MC)2=(AB+BC)2−2AB.BC   (∵AC=AM+MC=MB+MB)

(2MB)2=(30)2−2AB.BC

(2117)2−(30)2=−2AB.BC

468−900=−2AB.BC

AB.BC=2432=216

In ΔABC, BC is Base & AB is height 

∴A(ΔABC)=21BC×AB

=21×216

A(ΔABC)=108cm2 

Similar questions