Math, asked by ram1451978, 6 months ago

7. In what time will Rs 1000 amount to Rs 1331 at 10% per annum compound interest?

Answers

Answered by Anonymous
14

 \huge \colorbox{cyan}{question}

➡️In what time will Rs. 1000 become Rs. 1331 at 10% per annum compounded annually?

 \huge \colorbox{red}{answer}

 \huge \colorbox{pink}{ |3| years}

==》Principal = Rs. 1000;

==》 Amount = Rs. 1331;

==》Rate = 10% p.a. Let the time be n years.

Then,

==》[ 1000 (1+ (10/100))^n ] = 1331 or (11/10)^

==》n = (1331/1000) = (11/10)^3

==》n = 3 years

Answered by Anonymous
55

  \sf \underline{Given} : \begin{cases} \: \sf \: Principal = Rs  \: 1000 \\  \sf \: </p><p> \: Rate \:  = 10 \: \% \: \\ \sf \:  Amount  =  \: Rs \: 1331\end{cases}  \:

 \sf \underline{To \: find} :  \\

  •  \sf \: Time = ?

 \sf \underline{Solution} :  \:  \\

We have :

 \boxed{ \sf \: a  = \: p \bigg \{1 +  \frac{r}{100}  { \bigg \}}^{t}  } \\  \\

  \bigstar \: \sf \underline{  substitute \: all \: values} :  \\

 \sf :  \implies \: 1330 = 1000 \bigg \{ \: 1 +  \frac{10}{100}   {\bigg \}}^{t}  \\ \\  \sf :  \implies \: \frac{1330}{1000}  = \bigg \{ \: 1 +  \frac{10}{100}   {\bigg \}}^{t}  \\  \\\sf :  \implies \:  {  \bigg(\frac{11}{10} \bigg) } ^{3}  = \bigg \{ \:  \frac{11}{10}   {\bigg \}}^{t} \\  \\  \sf  : \implies \: \:  \:  \:  \:  \:  \:  \:  \:  t \:  =  \underline{3}

 \sf \therefore \: \underline{ the \:  \: time \: is \:  \bold{3 \: year}} :  \\


Anonymous: Great :)
Similar questions