Math, asked by HarshGupta5901, 1 year ago

7. Let y = √(log3.log, 12.log, 48.log, 192 +16 - log, 12.log, 48 +10. Find y e N.​

Answers

Answered by pulakmath007
5

SOLUTION

TO DETERMINE

 \sf{y =  \sqrt{ log_{2}(3) log_{2}(12) log_{2}(48)   log_{2}(192) + 16  }  -  log_{2}(12)  log_{2}(48) + 10 }

TO DETERMINE

The value of y ∈ N

EVALUATION

 \sf{y =  \sqrt{ log_{2}(3) log_{2}(12) log_{2}(48)   log_{2}(192) + 16  }  -  log_{2}(12)  log_{2}(48) + 10 }

Now

 \sf{log_{2}(12) }

 \sf{=  log_{2}(2 \times 2 \times 3)  }

 \sf{=  log_{2}(2 \times 2 )  +    log_{2}(3)  }

 \sf{=  log_{2}( {2}^{2}  )  +    log_{2}(3)  }

 \sf{= 2 log_{2}( 2  )  +    log_{2}(3)  }

 \sf{=  2+    log_{2}(3)  }

 \sf{Let  \:  \: x =  log_{2}(3)  }

Then we have

 \sf{  log_{2}(12)   = 2 + x}

Similarly we get

 \sf{  log_{2}(48)   = 4 + x}

 \sf{  log_{2}(192)   = 6 + x}

Thus the given equation becomes

 \sf{y =  \sqrt{ log_{2}(3) log_{2}(12) log_{2}(48)   log_{2}(192) + 16  }  -  log_{2}(12)  log_{2}(48) + 10 }

 \sf{ \implies \: y =  \sqrt{ x(x + 2)(x + 4)(x + 6) + 16  }  -  (x + 2)(x + 4) + 10 }

 \sf{ \implies \: y =  \sqrt{ x(x + 6)(x + 2)(x + 4) + 16  }  -  (x + 2)(x + 4) + 10 }

 \sf{ \implies \: y =  \sqrt{ ( {x}^{2}  + 6x)( {x}^{2} + 6x + 8 ) + 16  }  -  ( {x}^{2}  + 6x + 8) + 10 }

 \sf{ let \:  \: m =  {x}^{2}  + 6x + 8 }

Then from above we get

 \sf{y =  \sqrt{ m(m + 8)+ 16  }  -  ( m + 8) + 10 }

 \sf{ \implies \: y =  \sqrt{  {m}^{2}  + 8m+ 16  }  -  ( m + 8) + 10 }

 \sf{ \implies \: y =  \sqrt{  {(m + 4)}^{2} }  -  ( m + 8) + 10 }

 \sf{ \implies \: y =   (m + 4) -  ( m + 8) + 10 }

 \sf{ \implies \: y =   m + 4 -   m  -  8+ 10 }

 \sf{ \implies \: y =   6 }

FINAL ANSWER

Hence the required value of y = 6

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If log (0.0007392)=-3.1313 , then find log(73.92)

https://brainly.in/question/21121422

2.If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

Attachments:
Similar questions