Math, asked by adv1, 1 year ago

7^log x =98-x^log7 calculate the value of x

Answers

Answered by MaheswariS
11

Answer:

x=e^2

Step-by-step explanation:

Concept used:

N=a^x

Then, log_aN=x

N=a^{log_aN}

Given:

7^{logx}=98-x^{log7}

7^{logx}+x^{log7}=98

(e^{log7})^{logx}+(e^{logx})^{log7}=98

e^{log7\:logx}+e^{logx\:log7}=98

e^{log7\:logx}+e^{log7\:logx}=98

2(e^{log7\:logx})=98

e^{log7\:logx}=49

(e^{log_e7})logx=49

7^{logx}=7^2

This implies,

logx=2

x=e^2

Answered by aquialaska
2

Answer:

Value of x is e²

Step-by-step explanation:

Given : 7^{log\,x}=98-x^{log\,7}

We use the following results to find value of x.

(x^a)^b=x^{ab}

e^{log\,x}=x

Consider,

7^{log\,x}=98-x^{log\,7}

7^{log\,x}+x^{log\,7}=98

(e^{log\,7})^{log\,x}+(e^{log\,x})^{log\,7}=98

e^{log\,7\:log\,x}+e^{log\,x\:log\,7}=98

(e^{log\,7})^{log\,x}=49

(7)^{log\,x}=7^2

log\,x=2

e^{log\,x}=e^2

x=e^2

Therefore, Value of x is e²

Similar questions