India Languages, asked by rajeshkori235, 4 months ago

7. 'प्रकृति यहाँ एकान्त बैठि, निज रूप सँवारति,
पल-पल पलटति, छलक छन छन छवि धारति,
मानों जादू भरी, विश्व बाजीगर थैली,
खेलत में खुल परी)शैल के सिर फैली।'
उपर्युक्त पंक्तियाँ किस पाठ में आई हैं ?​

Attachments:

Answers

Answered by prabhas24480
1

Given

The radius and slant of height of a cone are in the ratio 4:7

Curved Surface Area is 792 cm²

___________________________________

To Find

The radius

___________________________________

Solution

Let's consider the radius to be '4x' and height be '7x' (Here we have taken the radius as 4x and 7x since they are in the ratio of 4:7)

Formula to find the curved surface area of a cone ⇒ πrl

Here,

'r' stands for radius.

'l' stands for the slant height.

Curved surface area of the cone ⇒ 729 cm²

Let's solve the equation step-by-step

\sf \dfrac{22}{7} \times 4x \times 7x = 792

Step 1: Simplify the equation.

\sf \dfrac{22}{7} \times 4x \times 7x = 729

\sf \dfrac{22}{7} \times 28x^{2}  = 792

\sf 22\times 4x^{2} =792

\sf 88x^{2} = 792

Step 2: Divide 88 from both sides of the equation.

\sf \dfrac{88x^{2}}{88} = \dfrac{792}{88}

\sf x^{2} = 9

Step 3: Find the square root of 9.

\sf x = \sqrt{9}

\sf x = 3

∴ The radius ⇒ 4x ⇒ 4(3) ⇒ 12 cm

∴ The slant height of cone ⇒ 7x ⇒ 7(3) ⇒ 21 cm

___________________________________

Similar questions