Math, asked by RINku3160, 1 year ago

7 root 3/ root 10 + root 3 - 2 root 5/ root 6+ root 5 - 3 Root 2 /root 15 + 3 Root 2ANSWER PLEASE.

Answers

Answered by DaIncredible
15
Hey friend,
Here is the answer you were looking for:
 \frac{7 \sqrt{3} }{ \sqrt{10} +  \sqrt{3}  }  -  \frac{2 \sqrt{5} }{ \sqrt{6}  +  \sqrt{5} }  -  \frac{3 \sqrt{2} }{ \sqrt{15} + 3 }  \\

On rationalizing the denominator we get,

 =  \frac{7 \sqrt{3} }{ \sqrt{10} +  \sqrt{3}  }  \times  \frac{ \sqrt{10} -  \sqrt{3}  }{ \sqrt{10}  -  \sqrt{3} }  -  \frac{2 \sqrt{5} }{ \sqrt{6} +  \sqrt{5}  }  \times  \frac{ \sqrt{6}  -  \sqrt{5} }{ \sqrt{6} -  \sqrt{5}  }  -  \frac{3 \sqrt{2} }{ \sqrt{15}  + 3}  \times  \frac{ \sqrt{15} - 3 }{ \sqrt{15}  - 3}  \\  \\  =  \frac{7 \sqrt{3}( \sqrt{10}  -  \sqrt{3}  )}{ {( \sqrt{10} )}^{2} -  {( \sqrt{3} )}^{2}  }  -  \frac{2 \sqrt{5} ( \sqrt{6} -  \sqrt{5})  }{ {( \sqrt{6}) }^{2} -  {( \sqrt{5}) }^{2}  }  -  \frac{3 \sqrt{2}( \sqrt{15} - 3)  }{ {( \sqrt{15}) }^{2}  -  {(3)}^{2} }  \\  \\  =  \frac{7 \sqrt{30}  - 21}{10 - 3}  -  \frac{2 \sqrt{30}  - 10}{6 - 5}  -  \frac{3 \sqrt{30} - 9 \sqrt{2}  }{15 - 9}  \\  \\  =  \sqrt{30}  - 3 - 2 \sqrt{30}  + 10 -  \frac{ \sqrt{30}  - 3 \sqrt{2} }{2}  \\  \\  =  -  \sqrt{30}  + 7  -  \frac{ \sqrt{30}  - 3 \sqrt{2} }{2}  \\  \\  =  \frac{  -  \sqrt{30}  \times 2 + 7 \times 2 -  \sqrt{30} + 3 \sqrt{2}  }{2}  \\  \\  =  \frac{ - 2 \sqrt{30}  + 14 -  \sqrt{30}  + 3 \sqrt{2} }{2}  \\  \\  =  \frac{14  + 3 \sqrt{2} - 3 \sqrt{30}  }{2}

Hope this helps!!

If you have any doubt regarding to my answer, feel free to ask in the comment section or inbox me if needed.

@Mahak24

Thanks...
☺☺
Similar questions