Math, asked by kanishka6277, 1 year ago

7. Show that :
(i) sin A + sin?(A - B) – 2sinA cosB sin(A - B) = sin²B​

Answers

Answered by Siddharta7
0

It should be: Prove that: sin²B = sin²A + sin²(A - B) - 2*sin(A)*cos(B)*sin(A - B) ii) Let me prove the same by taking Right side = Left side. Applying 2 sin(A)*cos(B) = sin(A + B) + sin(A - B), Right side is: = sin²A + sin²(A - B) - sin(A - B){sin(A + B) + sin(A - B)} = sin²A + sin²(A - B) - sin(A + B)*sin(A - B) - sin²(A - B) = sin²A - {sin(A + B)*sin(A - B)} = sin²A - sin²A + sin²B [Since sin(A + B)*sin(A - B) = sin²A - sin²B] = sin²B = Left side [Proved] Proof for sin(A + B)*sin(A - B) = sin²A - sin²B: sin(A + B)*sin(A - B) = {sin(A)*cos(B) + cos(A)*sin(B)}*{sin(A)*cos(B) - cos(A)*sin(B)} = sin²A*cos²B - cos²A*sin²B [Applying (a + b)(a - b) = a² - b²] = sin²A(1 - sin²B) - (1 - sin²A)sin²B = sin²A - sin²A*sin²B - sin²B + sin²A*sin²B = sin²A - sin²B

Similar questions