7 sin^2 30° +6cosec^2 60°-cot^2 45°/sin^2 60° + cos^2 60°
Answers
Answered by
7
Step-by-step explanation:
7 sin^2 30° +6cosec^2 60°-cot^2 45°/sin^2 60° + cos^2 60
Through the trigonometry table,
7(1/2)^2 + 6(2/√3)^2 - (1)^2/(√3/2)^2 + (1/2)^2
7/4 + 24/3 - 4/3 + 1/4
8/4 + 20/3
2 + 20/3
(6 + 20)/3
26/3
Answered by
12
Given,
7 sin² 30° +6cosec² 60°-cot² 45°/sin² 60° + cos² 60°
To find,
Value of the given equation
Solution,
According to the trignometric table of values;
Sin 30 = 1/2
cosec 60 = 2/√3
cot 45 = 1
sin 60 = √3/2
cos 60 = 1/2
Putting in the values
7(1/2)² + 6(2/√3)² - (1)²/(√3/2)² + (1/2)²
= 7/4 + 24/3 - 4/3 + 1/4
= 8/4 + 20/3
= 2 + 20/3
= (6 + 20)/3
= 26/3
So the value of 7 sin² 30° +6cosec² 60°-cot² 45°/sin² 60° + cos² 60° is equal to 26/3
Similar questions
Math,
1 month ago
English,
1 month ago
Music,
1 month ago
Social Sciences,
2 months ago
World Languages,
2 months ago
Science,
9 months ago
Social Sciences,
9 months ago