Math, asked by dwipayan, 11 months ago

7 sin squared theta + 3 cos squared theta equals to 4 so what is the value of tan theta​

Answers

Answered by RahulRJVeer
0

Given : 7 sin²A + 3 cos²A = 4

So , 4 sin²A + 3 sin²A + 3 cos²A = 4

=} 4 sin²A + 1 = 4 [Sin²A + Cos²A=1]

=} 4 sin²A = 3

=} sin²A = 3/4

On rooting both sides

sinA = √3/2

Hence , A = 60° [ Sin 60° = √3/2 ]

Hence the value of tanA = tan 60° = √3 [ Tan 60° = √3 ]

Solved.

Answered by raoabhishek7891
0

tan

7 \sin( \alpha ) {}^{2}  + 3 \cos( \alpha ) {}^{2}  = 4 \\ 4 \sin( \alpha ) {}^{2}  + 3(  \sin( \alpha ) {}^{2}   +  \cos( \alpha )  {}^{2}  )  = 4 \\ 4 \sin( \alpha )  {}^{2}  + 3 = 4 \\ 4 \sin( \alpha )  {}^{2}  = 1 \\  \sin( \alpha  {} )  {}^{2}  =  \frac{1}{4}   \\  \sin( \alpha   )  =   \frac{1}{2}   \\  \alpha  =  \frac{\pi}{6}  \\  \tan( \frac{\pi}{6} )  =  \frac{1}{ \sqrt{3} }

Similar questions