Math, asked by shivramnahak4953, 10 months ago

7 sin²θ + 3 cos²θ = 4. Find the value of Secθ + cosecθ.

Answers

Answered by ankannil03
0

Step-by-step explanation:

This is the solution .Reply if it is ok .Best of luck .

Attachments:
Answered by Anonymous
3

Answer:

\large\bold\red{\sec( \theta )  +  \csc( \theta )  =  \frac{2}{ \sqrt{3} }}±\large\bold\red{2}

Step-by-step explanation:

Given,

7 { \sin }^{2}  \theta + 3 { \cos}^{2} \theta   = 4

But,

We know that,

  \bold{{ \cos}^{2}  \theta = 1 -  { \sin }^{2}  \theta }

Therefore,

Putting the values,

We get,

 =  > 7 { \sin }^{2}  \theta + 3(1 -  {  \sin}^{2}   \theta) =  4 \\   =  > 7 { \sin}^{2}  \theta  + 3 - 3 { \sin }^{2} \theta = 4 \\  =  > 4 { \sin}^{2}    \theta  = 4 - 3 \\  =  > 4 { \sin }^{2}   \theta = 1 \\  =  >   { \sin }^{2}  \theta  =  \frac{1}{4}  \\

Therefore,

We get,

 =  >  \sin(  \theta  )  = ± \frac{1}{2}

But,

We know that,

  \bold{\csc(  \theta  )  =  \frac{1}{ \sin(  \theta ) } }

Therefore,

We get,

 =  >  \csc( \theta )  = ± 2 \:  \:  \:  \: .............(i)

Now,

We know that,

 \cos( \theta )  =  \sqrt{1 -  { \sin}^{2} \theta  }

Putting the values,

We get,

 =  >  \cos( \theta )  =  \sqrt{1 -  {( \frac{1}{2} )}^{2} }  \\  =  >  \cos( \theta )  =  \sqrt{1 -  \frac{1}{4} }  \\  =  >  \cos( \theta )  =  \sqrt{ \frac{4 - 1}{4} }  \\  =  >  \cos(  \theta  )  =  \sqrt{ \frac{3}{4} } \\  =  >  \cos( \theta )  =  \frac{ \sqrt{3} }{2}

But,

We know that,

 \sec( \theta )  =  \frac{1}{ \cos( \theta ) }

Therefore,

We get,

 \sec( \theta )  =  \frac{2}{ \sqrt{3} }  \:  \:  \:  \:  \:  \: ...............(ii)

Now,

From Equation (i) and (ii),

We get,

  =  > \sec( \theta )  +  \csc( \theta )  =   \frac{2}{ \sqrt{3} }  + 2)

\large\bold{=>\sec( \theta )  +  \csc( \theta )  =  \frac{2}{ \sqrt{3} }}±\large\bold{2}

Similar questions