7(tan a-b)=5(tan a+b) then find sin2a /sin2b
Attachments:
Answers
Answered by
4
Given: 7 ( tan (a-b) ) = 5 ( tan (a+b) )
To find: sin2a /sin2b
Solution:
- As we have given that 7 ( tan (a-b) ) = 5 ( tan (a+b) ), so lets convert it in the terms of sin and cos.
tan (a-b) / tan (a+b) = 5/7
sin(a-b) x cos(a+b) / cos(a-b) x sin(a+b) = 5/7
- Now, to make it the formula of double angles.
2 sin(a-b) x cos(a+b) / 2 cos(a-b) x sin(a+b) = 5/7
( sin 2a - sin 2b ) / ( sin 2a + sin 2b ) = 5/7
- { sin 2a - sin 2b = 2 sin(a-b) x cos(a+b) and sin 2a + sin 2b = 2 cos(a-b) x sin(a+b) }
- Taking the reciprocal, we get:
( sin 2a + sin 2b ) / ( sin 2a - sin 2b ) = 7/5
- So now, this term is in the form of componendo and dividendo, so we can write it as:
sin 2a / sin 2b = 6+1 / 6-1
sin 2a / sin 2b = 6/1
Answer:
So, the value of sin 2a / sin 2b is 6.
Similar questions