7 term of an Ap is 40 then the sum of frist 13 term is
Answers
Answered by
6
Hey there,
a7 = 40
a + 6d = 40
a = 40 - 6d
Sn = 13/2[2a + (13-1)d]
= 13/2[2(40-6d) + 12d]
= 13/2[80-12d + 12d]
= 13/2[80]
= 13 x 40
= 520
So, sum of first 13 term is 520
Hope it helps!
a7 = 40
a + 6d = 40
a = 40 - 6d
Sn = 13/2[2a + (13-1)d]
= 13/2[2(40-6d) + 12d]
= 13/2[80-12d + 12d]
= 13/2[80]
= 13 x 40
= 520
So, sum of first 13 term is 520
Hope it helps!
Danii999:
excellent work
Answered by
1
Hi !
a₇ = 40
i.e
a + 6d = 40
a = 40 - 6d ----> (1)
-------------------------------------------
Sn = n/2 [ 2a + (n-1)d]
= 13/2 [ 2a + 12d ]
= 13/2 x 2 [a + 6d]
= 13 [a + 6d]
= 13a + 78d
S₁₃ = 13a + 78d
From (1) ,
13 ( 40 - 6d) + 78d = S₁₃
520 - 78d + 78d = S₁₃
S₁₃ = 520
∴ Sum of first 13 terms = S₁₃ = 520
a₇ = 40
i.e
a + 6d = 40
a = 40 - 6d ----> (1)
-------------------------------------------
Sn = n/2 [ 2a + (n-1)d]
= 13/2 [ 2a + 12d ]
= 13/2 x 2 [a + 6d]
= 13 [a + 6d]
= 13a + 78d
S₁₃ = 13a + 78d
From (1) ,
13 ( 40 - 6d) + 78d = S₁₃
520 - 78d + 78d = S₁₃
S₁₃ = 520
∴ Sum of first 13 terms = S₁₃ = 520
Similar questions