Math, asked by bavanikarthikeyan112, 1 year ago

7. The area of a rhombus is 21 cm. If the perimeter of
the rhombus is 40 cm, then find the sum of its
diagonals (in cm).

Answers

Answered by Anonymous
111

AnswEr :

  • Area of Rhombus is 21 cm
  • Perimeter of Rhombus is 40 cm
  • Find the Sum of Diagonals.

 \small \boxed{ \bf{Area \:  of  \: Rhombus =  \frac{1}{2}  \times D_1  \times D_2}}

 \leadsto \sf{Area = \dfrac{1}{2} \times  D_1 \times D_2}

 \leadsto \sf{21 = \dfrac{1}{2} \times  D_1 \times D_2}

 \leadsto \sf{21 \times 2 = D_1 \times D_2}

 \leadsto \sf{ D_1 \times D_2 = 42 \: cm^{2}}

 \small \boxed{ \bf{Perimeter \:  of  \: Rhombus = 4 \times Side}}

\leadsto\sf{Perimeter = 4  \times Side}

\leadsto\sf{40 = 4  \times Side}

\leadsto\sf{ \cancel\dfrac{40}{4}  =Side}

\leadsto\sf{ Side = 10 \: cm}

━━━━━━━━━━━━━━━━━━━━━━━━

 \small \boxed{ \bf{(Side)^{2}  =  \dfrac{(Diagonal_1)^{2}  + (Diagonal_2)^{2} }{4}}}

 \longrightarrow \sf{(Side)^{2}  =  \dfrac{(D_1)^{2}  + (D_2)^{2} }{4}}

 \longrightarrow \sf{(10)^{2}  =  \dfrac{(D_1)^{2}  + (D_2)^{2} }{4}}

 \longrightarrow \sf{100 =  \dfrac{(D_1)^{2}  + (D_2)^{2} }{4}}

 \longrightarrow \sf{100 \times 4 =  (D_1)^{2}  + (D_2)^{2}}

 \longrightarrow \sf{ (D_1)^{2}  + (D_2)^{2} = 400}

  • (a + b)² = a² + b² + 2ab
  • therefore + = (a + b)² - 2ab

 \longrightarrow \sf{ (D_1 + D_2)^{2} - (2 \times D_1  \times  D_2) = 400}

 \longrightarrow \sf{ (D_1 + D_2)^{2} - (2 \times 42) = 400}

 \longrightarrow \sf{ (D_1 + D_2)^{2} - 84= 400}

 \longrightarrow \sf{ (D_1 + D_2)^{2} = 400 + 84}

 \longrightarrow \sf{ (D_1 + D_2)^{2} = 484}

 \longrightarrow \sf{D_1 + D_2 =  \sqrt{484} }

 \longrightarrow \sf{D_1 + D_2 =22 \: cm }

Sum of Diagonals of Rhombus is 22 cm.

Similar questions