Math, asked by rishirishabh, 5 hours ago

7. The curve y = x3 + 2x2 – 3x has a gradient of 4 at points A and B.
Find the x-coordinates of A and B.

Answers

Answered by ramprakash1982gupta
0

Answer:

The curve y = x3 + 2x2 – 3x has a gradient of 4 at points A and B.

Find the x-coordinates of A and B.

Step-by-step explanation:

the curve y = x3 + 2x2 – 3x has a gradient of 4 at points a and b.

find the x-coordinates of a and b.

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given curve is

\rm :\longmapsto\:y =  {x}^{3} +  {2x}^{2} - 3x -  -  -  - (1)

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx}(  {x}^{3} +  {2x}^{2} - 3x)

\rm :\longmapsto\:\dfrac{dy}{dx} =\dfrac{d}{dx}{x}^{3} +  2\dfrac{d}{dx}{x}^{2} - 3\dfrac{d}{dx}x

\rm :\longmapsto\:\dfrac{dy}{dx} = {3x}^{2} + 4x - 3

We know gradient or slope of a curve is

\rm :\longmapsto\:Gradient \: of \: curve = \dfrac{dy}{dx}

And it is given that

\rm :\longmapsto\:\dfrac{dy}{dx} = 4

\rm :\longmapsto\: {3x}^{2} + 4x - 3 = 4

\rm :\longmapsto\: {3x}^{2} + 4x - 3  -  4 = 0

\rm :\longmapsto\: {3x}^{2} + 4x - 7= 0

\rm :\longmapsto\: {3x}^{2} + 7x - 3x - 7= 0

\rm :\longmapsto\:x(3x + 7) - 1(3x + 7) = 0

\rm :\longmapsto\:(3x + 7)(x - 1) = 0

\rm :\longmapsto\:x = 1 \:  \: or \:  \: x =  - \dfrac{7}{3}

Hᴇɴᴄᴇ,

➢ Coordinates of A and Coordinates of B on the given curve are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y =  {x}^{3} + 2{x}^{2} - 3x   \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad \qquad}{} \\ \sf 1 & \sf 0 \\ \\ \sf   - \dfrac{7}{3}  & \sf   - \dfrac{140}{27}  \end{array}} \\ \end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions