Math, asked by shraavni78, 5 months ago

7. The difference of the parallel sides of a trapezoidal field is 20 m. Its area is 450 m² and its altitude is 15 m.​ Find the length of the parallel sides.​

Answers

Answered by Yuseong
19

Required Answer :

Given:

• The difference of the parallel sides of a trapezoidal field is 20 m.

• Area = 450 m²

• Altitude = 15 m

To calculate:

• Length of parallel sides.

Calculation:

Let the length of the parallel sides be x and y respectively.

  • x is longer side.
  • y is smaller side.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

According to the question :

 \sf {\dashrightarrow x - y = 20 }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf {\dashrightarrow x = 20 + y . . . . . . . (i) }

As we know that,

 \underline{\boxed {\sf { \star {Area}_{(Trapezium)} = \dfrac{1}{2} \times h \times (sum \: of \: parallel \: sides)} }}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf { \dashrightarrow 450 = \dfrac{1}{2} \times 15 \times (sum \: of \: parallel \: sides)}

  • Sum of parallel sides = x + y
  • Sum of parallel sides = (20+y)+y

⠀⠀» Substituting value of x from eq. (i)

Now,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf { \dashrightarrow 450  = \dfrac{1}{2} \times 15 ( 20 +2y) }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf { \dashrightarrow 450  = \dfrac{1}{2} \times 300 + 30y }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf { \dashrightarrow 450 \times 2 = 300 + 30y }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf { \dashrightarrow 900 = 300 + 30y }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf { \dashrightarrow 900 -300 =  30y }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf { \dashrightarrow 600 =  30y }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf { \dashrightarrow \dfrac{600}{30} =  y }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf { \dashrightarrow 20 =  y }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \boxed {\bf { \dashrightarrow 20 \: m =  Smaller \: side}}

 \underline{\sf{\therefore \: Length \: of \: y (smaller \: side) \: is 20 \: m }}

Also,

 \sf { \dashrightarrow x -y = 20}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf { \dashrightarrow x -20 = 20}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf { \dashrightarrow x = 20+20}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \sf { \dashrightarrow x = 40}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \boxed {\bf { \dashrightarrow 40 \: m =  Longer \: side}}

 \underline{\sf{\therefore \: Length \: of \: x (longer \: side) \: is 40 \: m }}

Similar questions