Math, asked by pranjalaher05, 2 months ago

7) The length of an arc of a circle subtending an angle of
measure 60° at the center is 10 cm. Find the area and
the circumference of the circle.

Answers

Answered by Anonymous
3

Step-by-step explanation:

 \underline{ \green{ \sf \: Given:-}}

  • Theta
  • Radius

 \underline{ \green{ \sf \: To  \: Find:-}}

  • The area and the circumference

 \underline{ \green{ \sf \: Solution:-}}

 \tt \: Area =   \bigg(\frac{60} {360} \times \pi {r}^{2} \bigg)  \\  \tt \leadsto \:  \frac{1}{ \cancel6}  \times  \frac{ \cancel{22}}{7}   \times 10 \times 10 \\  \tt \leadsto \:  \frac{1 \times 11 \times 10 \times 10}{21}   \\  \\  \tt \leadsto \:   \red{\frac{1100}{21}  = 52.38 \:  {cm}^{2} (approx.) }\\  \\

 \tt \: Circumference =  \frac{60}{360}  \times 2\pi r \\  \leadsto \tt \:  \frac{1}{ \cancel{6}}  \times 2 \times  \frac{22}{7}  \times \cancel{10 }\\  \tt \leadsto  \frac{1 \times 2 \times 22 \times 5}{21}  \\   \purple{\tt \leadsto \:  \frac{220}{21}  = 10.476 \: cm(approx.)}

Similar questions