7. The sum of the digits of a two-digit number is 5. If the digits are reversed, the number is reduced by 27. Find the number.
Answers
Let tens digit number be x and ones digit number be y.
So, original number = 10x + y
The sum of the digits of a two-digit number is 5.
Tens digit number + Ones digit number = 5
⇒ x + y = 5
⇒ x = 5 - y............(1)
If the digits are reversed, the number is reduced by 27.
Interchanged number = 10y + x
According to question,
⇒ 10y + x = 10x + y - 27
⇒ 10y - y + x - 10x = -27
⇒ 9y - 9x = -27
⇒ y - x = -3
⇒ x - y = 3
⇒ x = 3 + y...............(2)
On comparing both the equations we get,
⇒ 5 - y = 3 + y
⇒ y + y = 5 - 3
⇒ 2y = 2
⇒ y = 1
Substitute value of y in (1)
⇒ x = 5 - 1
⇒ x = 4
Therefore,
Original number = 10(4) + 1 = 41
Let ten's place of the digit be x and unit's place be y.
According to first condition
x+y=5...(1)
Original number=10x+y
Reversed number=10y+x
According to second condition
10x+y=10y+x+27
9x-9y=27
9(x-y)=27
x-y=27/9
x-y=3...(2)
Adding equations (1) and (2)
x+y=5
+
x-y=3
--------------
2x=8
x=8/2
x=4
Substituting x=4 in equation (1)
4+y=5
y=5-4
y=1
Number=10x+y
=10(4)+1
=41
The number is 41
Hope it helps you:)