7. Use the remainder's theorem to find the value of m for which x + 2 is a factor of
(x + 1) ^ 7 + (2x + m) ^ 3
(a) 3
(b) 5
(c) 4
(d) 2
Answers
Answered by
1
Given :
p(x) = (x + 1)⁷ + (2x + m)³ = 0
and, x + 2 is a factor of p(x)
⇒ x = -2
To Find :
value of m
Solution :
by substituting the x value in p(x) ,
⇒ (-2 + 1)⁷ + [(2)(-2) + m]³ = 0
⇒ (-1)⁷ + (-4 + m)³ = 0
⇒ -1 + (-64) + m³ - 3(-4)(m)(-4 + m) = 0
⇒ -1 - 64 + m³ + 12m(-4 + m) = 0
⇒ -63 + m³ - 48m + 12m² = 0
⇒ m³ + 12m² - 48m - 63 = 0
⇒ m = 2
Similar questions
Math,
9 days ago
French,
19 days ago
Math,
19 days ago
Computer Science,
9 months ago
English,
9 months ago