Math, asked by gopikaroxx, 1 year ago

7. Without using trigonometric table, evaluate:
cos 60° + sin 30° - cot 30° divided by
tan 60° + sec 45° - cosec 45°​

Answers

Answered by anshudalal23
6

Answer:

Step-by-step explanation:

sin(90-60)-cot30/cot(90-60)+cosec(90-45)-cosec45

sin30+sin30-cot30/cot30+cosec45-cosec45

2sin30-cot30/cot30

Answered by harendrachoubay
5

The value of \dfrac{\cos 60+\sin 30-\cot 30}{\tan 60+\sec 45-\csc 45​} is equal to \dfrac{2\sin 30-\cot 30}{\tan 60}.

Step-by-step explanation:

We have,

\dfrac{\cos 60+\sin 30-\cot 30}{\tan 60+\sec 45-\csc 45​}

To find, the value of \dfrac{\cos 60+\sin 30-\cot 30}{\tan 60+\sec 45-\csc 45​} = ?

\dfrac{\cos 60+\sin 30-\cot 30}{\tan 60+\sec 45-\csc 45​}

=\dfrac{\cos (90 -30)+\sin 30-\cot 30}{\tan 60+\sec (90-45)-\csc 45​}

Using the trigonometric identity,

\sin  A=\cos (90 -A) and \csc A = \sec (90-A)

=\dfrac{\sin 30+\sin 30-\cot 30}{\tan 60+\csc 45-\csc 45​}

=\dfrac{2\sin 30-\cot 30}{\tan 60}

∴ The value of \dfrac{\cos 60+\sin 30-\cot 30}{\tan 60+\sec 45-\csc 45​} =\dfrac{2\sin 30-\cot 30}{\tan 60}

Thus, the value of \dfrac{\cos 60+\sin 30-\cot 30}{\tan 60+\sec 45-\csc 45​} is equal to \dfrac{2\sin 30-\cot 30}{\tan 60}.

Similar questions