Math, asked by shiwanigahtori2, 1 month ago

7 ^ { x + 1 / x } find dy / dx?
explain step by step please ​

Answers

Answered by ajr111
21

Answer:

\mathrm{ 7^{\big(x+\frac{1}{x}\big)}.log7.\bigg(1 - \dfrac{1}{x^2}\bigg)}

Step-by-step explanation:

Given :

\mathrm{y = 7^{\big(x+\frac{1}{x}\big)}}

To find :

\mathrm{\dfrac{dy}{dx}}

Solution :

\longmapsto \mathrm{y = 7^{\big(x+\frac{1}{x}\big)}}

Applying log on both sides,

We know that,

\boxed{\mathrm{log\; a^m = m\: loga}}

\implies \mathrm{logy = {\big(x+\frac{1}{x}\big)}log7}

Differentiating with respect to x both sides,

We know that,

\boxed{\begin{array}{cc} \mathrm{\dfrac{d}{dx}(logx) = \dfrac{1}{x} }\\\\\mathrm{\dfrac{d}{dx}(x^n) = nx^{n-1}}\end{array}}

So, here,

\implies \mathrm{\dfrac{1}{y}\dfrac{dy}{dx} = {\bigg(1-\dfrac{1}{x^2}\bigg)}log7}

\implies \mathrm{\dfrac{dy}{dx} = ylog7\bigg(1 - \dfrac{1}{x^2}\bigg)}

\therefore \underline{\boxed{\mathbf{\dfrac{dy}{dx} = 7^{\big(x+\frac{1}{x}\big)}.log7.\bigg(1 - \dfrac{1}{x^2}\bigg)}}}

Extra information

Some basic differentiations :

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf x^n & \sf nx^{n-1} \\ \\ \sf \sqrt{x} & \sf \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x} \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf - \: sinx \\ \\ \sf tanx & \sf {sec}^{2}x \\ \\ \sf cotx & \sf - {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf - \: cosecx \: cotx \end{array}} \\ \end{gathered}

Hope it helps!!

Please mark as brainliest

Similar questions