Math, asked by sesami, 1 year ago

70 points answer plzz

Attachments:

Answers

Answered by gaurav2013c
1
Z - 1/Z = 6

On squaring both sides, we get

Z^2 + 1 /Z^2 - 2(Z)( 1/ Z) = 36

=> Z^2 + 1/Z^2 - 2 = 36

=> Z^2 + 1/Z^2 = 38 ---------(1)

Now,

( Z + 1/ Z) ^2 = Z^2 + 1/Z^2 + 2(Z) (1/Z)

( Z + 1/ Z) ^2= Z^2 + 1/Z^2 + 2

( Z + 1/ Z) ^2= 38 + 2

( Z + 1/ Z) ^2= 40

z +  \frac{1}{z}  =  \sqrt{40}  \\  \\  = 2 \sqrt{10}

Now,

On squaring both sides of equation (1), we get,


Z^4 + 1 / Z^4 + 2(Z^2) (1/Z^4) = 1444

=> Z^4 + 1 / Z^4 + 2 = 1444

=> Z^4 + 1 / Z^4 = 1442
Answered by siddhartharao77
2
Given z - 1/z = 6.

(i)

We know that (z + 1/z)^2 = (z - 1/z)^2 + 4

                                         = (6)^2 + 4

                                         = 36 + 4

                                         = 40.

 z +  \frac{1}{z} =  \sqrt{40} .


(2)

On squaring both sides, we get

(z +  \frac{1}{z} )^2 = ( \sqrt{40} )^2

z^2 +  \frac{1}{z^2} + 2 * z *  \frac{1}{z} = 40

z^2 +  \frac{1}{z^2} + 2 = 40

z^2 +  \frac{1}{z^2}  = 40 - 2

z^2 +  \frac{1}{z^2} = 38



(3)

On squaring both sides, we get

(z^2 +  \frac{1}{z^2} )^2 = (38)^2

z^4 +  \frac{1}{z^4} + 2 * z^2 *  \frac{1}{z^2} = 1444

z^4 +  \frac{1}{z^4} + 2 = 1444

z^4 +  \frac{1}{z^4} = 1444 - 2

z^4 +  \frac{1}{z^4} = 1442



Hope this helps!
Similar questions