Math, asked by rrrrrrrsssssss, 1 month ago

71. In the given figure, ABC is a quadrant of a
circle of radius 10 cm and a semi-circle is
drawn with BC as diameter. Find the area
of shaded region.
CBSE 2008, 08C
B
10 cm
AF 10 cm​

Answers

Answered by TheBrainlistUser
12

Given :

  • ABC is a quadrant of a circle of radius 10cm.
  • ABC is a quadrant of a circle of radius 10cm.A semi-circle is drawn with BC as diameter.

To find :

  • The area of shaded portion. A

Solution :

_____________________

Case I

  • Finding the area of quadrant of the circle which is of radius 10

Using formula : Area of sector = θ/360πr²

We have,

  • θ = 90° [ As the angle is a quadrant of circle.
  • r = 10cm

Putting the values

Area of sector = θ/360πr²

 →90 \div 360 \times 3.14 \times 10 {}^{2}  \\ →1 \div 4 \times 3.14 \times 100 \:  \:  \:  \:  \:   \:   \\ →1 \div 4 \times 314 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\ →78.5cm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Case II

  • Finding area of ABC

Using formula : Area of triangle = 1/2 × base × height

We have,

  • Base = 10cm
  • height = 10cm

Putting the values

Area of triangle = 1/2 × base × height

→ \frac{1}{2}  \times 10 \times 10 \\ → \frac{1}{2}  \times 100 \:  \:  \:  \:  \:  \:  \:  \:   \\ →50cm {}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Case III

  • Finding length of BC

Using Pythagoras theorem = BC² = AB² + AC²

We have,

  • AB = 10cm
  • AC = 10cm

Putting the values

BC² = AB² + AC²

BC² = 10² + 10²

BC² = 100 + 100

BC² = 200

BC = 200

BC = 14.14 cm

Case IV :

  • Finding the area of semi circle ia drawn with BC as diameter

Using Formula : Area of semi circle = 1/2πr²

We have,

  • r = 14.14/2 = 7.07 cm

Putting the values

Area of semi circle = 1/2πr²

→ \frac{1}{2}  \times 3.14 \times 7.07 {}^{2}   \\ →\frac{1}{2}  \times 3.14 \times49.98 \\ → \frac{1}{2}  \times 156.93 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ →78.46cm {}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Case V :

  • Finding area of shaded portion

Formula : Area of shaded portion : [ Area of semi circle - ( area of sector - area of triangle)]

We have,

  • Area of semi circle = 78.46cm²
  • Area of sector = 78.5cm²
  • Area of triangle = 50cm²

Putting the values

Area of shaded portion : [ Area of semi circle - ( area of sector - area of triangle)]

→78.46 - (78.5 - 50) \\ →78.46 - 28.5 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\ →49.96

Hence, the area of shaded portion = 49.96cm²

Attachments:
Similar questions