Math, asked by pd1042000, 1 month ago

((729)^n/6×9^2n+1)÷(81^n×3^n-1)=?​

Answers

Answered by sanjanagusinge84
0

Answer:

the answer is 9 of your question hope it would be helpful

Answered by Dhruv4886
0

The answer is 27

Given problem:

[ \frac{(729)^{\frac{n}{6}} . (9^{2n+1} )}{ ( 81^{n} . 3^{n-1} )} ]  

Solution:

Take Numerator (729)^{\frac{n}{6}} . (9^{2n+1} )  

Here,  729  = 3⁶                          

⇒ 9²ⁿ⁺¹  = (3²)²ⁿ⁺¹ = 3⁴ⁿ⁺²            [ ∵ (aⁿ)ˣ = aⁿˣ ]  

(729)^{\frac{n}{6}} . (9^{2n+1} )  = (3^{6} )^{\frac{n}{6}} . (3^{4n+2} ) = (3^{n} ). (3^{4n+2} )  = 3^{n+4n+2}  = 3^{5n+2}  

(729)^{\frac{n}{6}} . (9^{2n+1} )  = 3^{5n+2} _ (1)  

   

Take denominator 81^{n} . 3^{n-1}  

⇒ 81ⁿ = (3⁴)ⁿ  = 3⁴ⁿ  

81^{n} . 3^{n-1}  = 3⁴ⁿ (3ⁿ⁻¹) =  3⁵ⁿ⁻¹

81^{n} . 3^{n-1} =  3⁵ⁿ⁻¹ _ (2)

From (1) and (2)

[ \frac{(729)^{\frac{n}{6}} . (9^{2n+1} )}{ ( 81^{n} . 3^{n-1} )} ] =  \frac{3^{5n+2}}{3^{5n-1} } = \frac{3^{5n} (3^{2}) }{(3^{5n}) (3^{-1})  } = 3²×3¹ = 3³ = 27      

 

Therefore, [(729)^n/6×9^2n+1] ÷ [ 81^n×3^n-1] = 27

#SPJ2

Similar questions