Math, asked by kalkidevsharma1234, 2 months ago

74. If alpha and beta are the roots of x² + 4x + 6
= 0 , then value of alpha³+ beta³=​

Answers

Answered by chnaidu1969
2

Step-by-step explanation:

hope this helps you better

Attachments:
Answered by BlessedOne
105

Given :

  • Equation - \tt\:x^{2}+4x+6=0

  • \tt\:\alpha and \tt\:\beta are the roots of the given equation.

To :

  • Find the value of \tt\:\alpha^{3} + \beta^{3} .

Concept to be used :

We would calculate the sum of the roots and then the product of the roots by using formulae . Then after using cubic identity and substituting the values , we will get the value of alpha³+ beta³ .

The formulae to be used are as follows :

\bf\:Sum~of~the~roots~=~\frac{-b}{a}

\bf\:Product~of~the~roots~=~\frac{c}{a}

\bf\:a^{3}+b^{3}=(a+b) ^{3}-3ab(a+b)

Solution :

Equation given - \tt\:x^{2}+4x+6=0

We know general form of equation is \tt\:ax^{2}+bx+c=0 .

So comparing the general form of equation and the given equation we get :

  • a = 1 , b = +4 , and c = +6

Calculating the sum of the roots :

\bf\:Sum~of~the~roots~=~\frac{-b}{a}

Substituting the values of b and a

\bf\implies\:Sum~of~the~roots~=~\frac{-4}{1}

\small{\mathfrak{\implies\:Sum~of~the~roots~=~-4}}

Calculating the product of the roots :

\bf\:Product~of~the~roots~=~\frac{c}{a}

Substituting the values of c and a

\bf\implies\:Product~of~the~roots~=~\frac{6}{1}

\small{\mathfrak{\implies\:Product~of~the~roots~=~6}}

Now value of alpha³+ beta³ -

\bf\:\alpha^{3}+\beta^{3}=(\alpha+\beta)^{3} -3 \times \alpha \times \beta (\alpha + \beta)

Here as we know that \tt\:\alpha and \tt\:\beta are the roots of the given equation.

Therefore \tt\:\alpha+\beta denotes Sum of the roots and \tt\:\alpha \times \beta denotes Products of the roots .

Plugging the values in the identity :

\sf\implies\:\alpha^{3}+\beta^{3}=(-4)^{3} -3 \times 6 (-4)

\sf\implies\:\alpha^{3}+\beta^{3}=-64 -3 \times (-24)

\sf\implies\:\alpha^{3}+\beta^{3}=-64 -(-72)

\sf\implies\:\alpha^{3}+\beta^{3}=-64 + 72

\small{\underline{\boxed{\mathrm{\implies\:\alpha^{3}+\beta^{3}= 8}}}}

________________________‎

Similar questions