Math, asked by Nilay123, 1 year ago

75^1/x = 45^1/y = 15^1/z.
Show that x + y = 3z

Answers

Answered by vyas03
13
hope it helps you. and mark my answer as brainliest answer
Attachments:
Answered by amitnrw
4

Given :  \sqrt[x]{75} =\sqrt[y]{45} =\sqrt[z]{15}

To Find : which of the statement is true ...

1. x+y=2z

2.x+y=3z

3.x-y=2z

4.x-y=3z

Solution:

\sqrt[x]{75} =\sqrt[y]{45} =\sqrt[z]{15}

\implies \sqrt[x]{5\times 5\times3} =\sqrt[y]{3\times 3\times5} =\sqrt[z]{3\times 5}

\implies (5\times 5\times3)^{\frac{1}{x}}  =  (3\times 3\times5)^{\frac{1}{y}}  =  (3\times 5 )^{\frac{1}{z}}

\implies (5)^{\frac{2}{x}}(3)^{\frac{1}{x}}  = (3)^{\frac{2}{y}} (5)^{\frac{1}{y}}  = (3 )^{\frac{1}{z}}  (5 )^{\frac{1}{z}}

Equating 1st two terms

(5)^{\frac{2}{x}}(3)^{\frac{1}{x}}  = (3)^{\frac{2}{y}} (5)^{\frac{1}{y}}

(5)^{\frac{2}{x}-\frac{1}{y} }  = (3)^{\frac{2}{y}-\frac{1}{x}}

(5)^{\frac{2y-x}{xy} }  = (3)^{\frac{2x-y}{xy}}

(5)^{\frac{2y-x}{2x-y} }  = 3   Eq1

Similarly Equating 1st & 3 term

(5)^{\frac{2z-x}{x-z} }  = 3    Eq2

Equating Eq1 and Eq2 and Equating powers of 5

( 2y - x ) /(2 x - y)  =  (2z - x)/(x - z)

=> 2xy - x² - 2yz + xz  = 4xz - 2x² - 2yz  + xy

=> x²  + xy   = 3xz

=> x + y = 3z

QED

Learn More:

A^2m-5*b^3n-2*c^4p-1=abc where a b c are natural numbers , find

https://brainly.in/question/18496978

A^2m-5*b^3n-2*c^4p-1=abc where a b c are rational numbers , find

https://brainly.in/question/18480381

Similar questions