Math, asked by surinderpal15, 11 months ago

76. Solve for x, √2x+ 9+x=3.​

Answers

Answered by sawani11
3

Step-by-step explanation:

√2x+9+x=3

√2x+x=-6

x(√2+1)=-6

x=-6/√2+1

Answered by Anonymous
9

Given that,

 \sf{ \sqrt{2}x + 9 + x = 3 }

To find the value of x.

Now,

 \sf{ \sqrt{2}x + 9 + x = 3 } \\  \\  \implies \:  \sf{ \sqrt{2}x  + x =  - 6 } \\  \\  \implies \:  \sf{x( \sqrt{2}  + 1) =  - 6} \\  \\  \implies \:  \sf{x =  \frac{ - 6}{ \sqrt{2} + 1  } }

Rationalising the denominator,

But why do we rationalize here,it is because there should be no radical signs in the denominator of a fraction.

So,

 \sf{x =  \frac{ - 6}{ \sqrt{2}  + 1} } \\  \\  \sf{  \:  \:  \:  \: =   \frac{ - 6}{ \sqrt{2}  + 1} \times   \frac{ \sqrt{2}  - 1}{ \sqrt{2} - 1 }   } \\  \\  \sf{  \:  \:  \:  \: =  \frac{ - 6( \sqrt{2} - 1) }{ \sqrt{2 {}^{2} }  - 1 {}^{2}  } } \\  \\  \sf{  \:  \: = - 6 \sqrt{2}   + 6 }

The value of x is -6√2+6

Similar questions