Math, asked by desika, 9 months ago

77.
Equation of the line dividing the joining the points (1, 1) and (2, 4) in the ratio 1 : 2 and
having slope 11 is
1)33x - 3y - 38 = ( 2) 33x - 3y - 38 = 0
3) 33x - 3y + 38=0 4) 33x + 3y +38=0​

Answers

Answered by MaheswariS
2

\textbf{Given:}

\textsf{Points are (1,1) and (2,4)}

\textbf{To find:}

\textsf{Equation of the line dividing the given points in the ratio 1:2}

\textsf{and having slope 11}

\textbf{Solution:}

\textsf{Consider,}

\textsf{The coordinates of the point which divides line joining (1,1) and (2,4)}

\textsf{internally in the ratio 1:2 is}

\mathsf{\left(\dfrac{mx_2+nx_1}{m+n},\dfrac{my_2+ny_1}{m+n}\right)}

\mathsf{\left(\dfrac{1(2)+2(1)}{1+2},\dfrac{1(4)+2(1)}{1+2}\right)}

\mathsf{\left(\dfrac{4}{3},\dfrac{6}{3}\right)}

\mathsf{\left(\dfrac{4}{3},2\right)}

\textsf{Equation of the required line is}

\mathsf{y-y_1=m(x-x_1)}

\mathsf{y-2=11(x-\frac{4}{3})}

\mathsf{y-2=11\left(\frac{3x-4}{3}\right)}

\mathsf{3y-6=11(3x-4)}

\mathsf{3y-6=33x-44}

\textsf{Rearranging terms we get}

\mathsf{33x-3y-38=0}

\textbf{Answer:}

\mathsf{Option\;(2)\;is\;correct}

\textbf{Find more:}

In what ratio is the line segment joining A(2,-3)&B(5,6) divided by x-axis also find the coordinate of the point of division.

https://brainly.in/question/7118881

Find the ratio in which the line segment joining the points (- 2 3) and (3 - 2) is divided by y axis​

https://brainly.in/question/14355682

Similar questions