Math, asked by vishakakhengare80190, 10 months ago


77.) If osec 0 - sineO = a^3, secO - cosO = b prove that a^2 b^2(a^2 + b^2) = 1​

Answers

Answered by manavjaison
0

Heya friend,

Given :-

cosec ∅ - sin ∅ = a^{3}

sec ∅ - cos ∅ = b^{3}

To prove :- a^{2} b^{2} (a^{2} +b^{2}) = 1

Now,

(1/sin ∅) - sin ∅ = a^{3}

(1-sin^{2}∅) / sin∅ = a^{3}

cos^{2}∅ / sin∅ = a^{3}

Now, we know from the question that we require a^{2}, so first we will cube root a^{3} to get a and then square it .

So,

(cos^{2})^{\frac{1}{3} } ∅ / sin^{\frac{1}{3} }∅ = a^{3}

Now, squaring both sides, we get,

cos^{\frac{4}{3} } ∅ / sin^{\frac{2}{3} } ∅ = a^{2} -------------------- (1)

and,

sec ∅ - cos ∅ = b^{3}

(1 / cos∅) - cos ∅ = b^{3}

( 1 - cos^{2} ∅ ) / cos ∅ = b^{3}

sin^{2} ∅ / cos ∅ = b^{3}

Again,

sin^{\frac{2}{3} } ∅ / cos^{\frac{1}{3} } = b

Squaring both sides,

sin^{\frac{4}{3} } ∅  / cos^{\frac{2}{3} } ∅ = b^{2} ---------------------- (2)

Now from L.H.S. ,

a^{2} b^{2} =  ( cos^{\frac{4}{3} } ∅ / sin^{\frac{2}{3} } ∅ ) × ( sin^{\frac{4}{3} } / cos^{\frac{2}{3} } )

      = cos^{\frac{2}{3} }sin^{\frac{2}{3} }

and,

a^{2} + b^{2} = ( cos^{\frac{4}{3} } ∅ / sin^{\frac{2}{3} } ∅ ) + ( sin^{\frac{4}{3} } ∅ / cos^{\frac{2}{3} } ∅ )

           = [ cos^{\frac{4}{3} + \frac{2}{3} } + sin^{\frac{2}{3} +\frac{4}{3} } ] / sin^{\frac{2}{3} }cos^{\frac{2}{3} }

           = ( sin^{2}∅ +cos^{2}∅ ) / sin^{\frac{2}{3} }cos^{\frac{2}{3} }

           = 1 / sin^{\frac{2}{3} } ∅  cos^{\frac{2}{3} }

Now,

a^{2} b^{2} (a^{2} +b^{2}) =

sin^{\frac{2}{3} }cos^{\frac{2}{3} } ∅ × ( 1 / sin^{\frac{2}{3} }cos^{\frac{2}{3} } ∅ )

⇒ 1

Hence proved !!!

Thanks !

#BAL #answerwithquality

Similar questions