77.
If sec 0 + tan 0 = p, then sin 0 =
Answers
Answered by
2
let theta=x
Given secx+tanx=p-------------------[1]
since sec²x-tan²x=1
=>(secx+tanx)(secx-tanx)=1
=>p(secx-tanx)=1
=>secx-tanx=1/p------------------------>[2]
[1]-[2]
=>2tanx=p-1/p
=(p²-1)/p-------------------------->[3]
[1]+[2]
=>2secx=p+1/p
=(p²+1)/p------------------------->[4]
divide [3] with [4]
=> 2tanx (p²-1)/p
------- = ---------
2secx (p²+1)/p
sinx/cosx p²-1
=> -------------- = ---------
1/cosx p²+1
=> sinx=(p²-1)/(p²+1)
Mark as Brainleist
Similar questions