Math, asked by sairindhrisahoo2020, 5 hours ago

784÷14+598÷13+?=99% of 2500.​

Answers

Answered by Anonymous
106

Step-by-step explanation:

Given

✞︎784÷14+598÷13+?=99% of 2500.

✞︎To Find

The Answer❥︎

✞︎Solution

\tt\large\underline{\longmapsto784÷14+598÷13+X=( \frac{99}{100} ) ×2500}

\tt\large\underline{\longmapsto \: X=2475-102}

\tt\large\underline{\longmapsto56+46+X=0.99x2500}

\tt\large\underline{\longmapsto102+X=2475}

56+46+x=0.99x2500

So,

\tt\large\underline\pink{x = 2373}

Hope It Helps!!

✞︎More Information:

\begin{gathered}\sf\color{aqua}{Trigonometry\: Table}\\ \blue{\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \sf \red{\angle A} & \red{\sf{0}^{ \circ} }&\red{ \sf{30}^{ \circ} }& \red{\sf{45}^{ \circ} }& \red{\sf{60}^{ \circ}} &\red{ \sf{90}^{ \circ}} \\ \hline \\ \rm \red{sin A} & \green{0} & \green{\dfrac{1}{2}}& \green{\dfrac{1}{ \sqrt{2} }} &\green{ \dfrac{ \sqrt{3}}{2} }&\green{1} \\ \hline \\ \rm \red{cos \: A} & \green{1} &\green{ \dfrac{ \sqrt{3} }{2}}&\green{ \dfrac{1}{ \sqrt{2} }} & \green{\dfrac{1}{2}} &\green{0} \\ \hline \\\rm \red{tan A}& \green{0} &\green{ \dfrac{1}{ \sqrt{3} }}&\green{1} & \green{\sqrt{3}} & \rm \green{\infty} \\ \hline \\ \rm \red{cosec A }& \rm \green{\infty} & \green{2}& \green{\sqrt{2} }&\green{ \dfrac{2}{ \sqrt{3} }}&\green{1} \\ \hline\\ \rm \red{sec A} & \green{1 }&\green{ \dfrac{2}{ \sqrt{3} }}& \green{\sqrt{2}} & \green{2} & \rm \green{\infty} \\ \hline \\ \rm \red{cot A }& \rm \green{\infty} & \green{\sqrt{3}}& \green{1} & \green{\dfrac{1}{ \sqrt{3} }} & \green{0}\end{array}}}}\end{gathered}

Similar questions