Math, asked by saurabh4526, 6 months ago

7a²+7b²÷7a²_7b²=113÷13value of a÷b?

Answers

Answered by BrainlyPopularman
55

GIVEN :

  \\ \implies\bf \dfrac{7 {a}^{2} + 7 {b}^{2} }{7 {a}^{2}  - 7 {b}^{2}}  =  \dfrac{113}{13} \\

TO FIND :

Value of a/b = ?

SOLUTION :

  \\ \implies\bf \dfrac{7 {a}^{2} + 7 {b}^{2} }{7 {a}^{2}  - 7 {b}^{2}}  =  \dfrac{113}{13} \\

  \\ \implies\bf \dfrac{7( {a}^{2} +  {b}^{2} )}{7 ({a}^{2}  -  {b}^{2})} =  \dfrac{113}{13} \\

  \\ \implies\bf \dfrac{{a}^{2} +  {b}^{2}}{{a}^{2}  -  {b}^{2}} =  \dfrac{113}{13} \\

• Use C & D rule –

  \\ \implies\bf \dfrac{({a}^{2} +  {b}^{2}) + ({a}^{2}  -  {b}^{2})}{({a}^{2} +  {b}^{2}) - ({a}^{2}  -  {b}^{2})} =  \dfrac{113 + 13}{113 - 13} \\

  \\ \implies\bf \dfrac{{a}^{2} +  {b}^{2} + {a}^{2}  -  {b}^{2}}{{a}^{2} +  {b}^{2} - {a}^{2}  +  {b}^{2}} =  \dfrac{113 + 13}{113 - 13} \\

  \\ \implies\bf \dfrac{{a}^{2} +  {b}^{2} + {a}^{2}  -  {b}^{2}}{{a}^{2} +  {b}^{2} - {a}^{2}  +  {b}^{2}} =  \dfrac{126}{100} \\

  \\ \implies\bf \dfrac{{a}^{2} + {a}^{2}}{{b}^{2}+  {b}^{2}} =  \dfrac{126}{100} \\

  \\ \implies\bf \dfrac{2{a}^{2}}{2{b}^{2}} =  \dfrac{126}{100} \\

  \\ \implies\bf \dfrac{{a}^{2}}{{b}^{2}} =  \dfrac{126}{100} \\

  \\ \implies\bf \bigg(\dfrac{a}{b} \bigg)^{2} =  \dfrac{126}{100} \\

  \\ \implies\bf \dfrac{a}{b}=  \sqrt{\dfrac{126}{100}}\\

  \\ \large\implies{ \boxed{\bf \dfrac{a}{b}= \dfrac{ \sqrt{126}}{10}}}\\


EliteSoul: Nice!
BrainlyPopularman: Thanks
Similar questions