Math, asked by simantinisule, 3 months ago

7cos A - 24 sin A = 0 , then find tan A, sec A, cosec A​

Answers

Answered by SparklingBoy
7

Given that

 \sf {\: 7 cos A - 24sinA = 0} \\  \\  \implies \sf7cosA = 24sinA \\  \\  \implies \sf \frac{sinA}{cos A}  =  \frac{7}{24}  \\  \\    \sf \implies   \red{\boxed {\boxed{tanA =  \frac{7}{24} }}}

Now,

 \sf sec {}^{2} A = 1 +  {tan}^{2} A \\  \\  =  1  \: +   \:  {( \frac{7}{24} })^{2}  \\  \\  = 1 \:  +  \:  \frac{49}{576}  \\  \\  =  \frac{625}{576}  \\  \\  \sf secA =  \sqrt{ \frac{625}{576} }  \\  \\  \sf \implies  \red{ \boxed {\boxed{secA =  \frac{25}{24}}}}

So

 \sf cosA =  \frac{24}{25}  \\  \\  \sf \implies sinA =  \sqrt{1 -  \frac{ {24}^{2} }{25 {}^{2} } }  \\  \\  =  \sf  \sqrt{1 -  \frac{576}{625} }  \\  \\  \sf =   \sqrt{ \frac{49}{625} }  \\  \\   \sf \implies \red{ \boxed{ \boxed{sin A =  \frac{7}{25}  }}}

Answered by BrainlyTurtle
53

Here is your Answer Mate

Mark it Brainliest⚾️⛷⛷☺

 \sf {\: 7 cos A - 24sinA = 0} \\  \\  \implies \sf7cosA = 24sinA \\  \\  \implies \sf \frac{sinA}{cos A}  =  \frac{7}{24}  \\  \\    \sf \implies   \blue{\boxed {{tanA =  \frac{7}{24} }}}

 \sf sec {}^{2} A = 1 +  {tan}^{2} A \\  \\  =  1  \: +   \:  {( \frac{7}{24} })^{2}  \\  \\  = 1 \:  +  \:  \frac{49}{576}  \\  \\  =  \frac{625}{576}  \\  \\  \sf secA =  \sqrt{ \frac{625}{576} }  \\  \\  \sf \implies  \blue{ \boxed {{secA =  \frac{25}{24}}}}

 \sf cosA =  \frac{24}{25}  \\  \\  \sf \implies sinA =  \sqrt{1 -  \frac{ {24}^{2} }{25 {}^{2} } }  \\  \\  =  \sf  \sqrt{1 -  \frac{576}{625} }  \\  \\  \sf =   \sqrt{ \frac{49}{625} }  \\  \\   \sf \implies \pink{ \boxed{ {sin A =  \frac{7}{25}  }}}

Similar questions